Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
World J Microbiol Biotechnol ; 36(4): 61, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32285218

ABSTRACT

The distinctive physico-chemical features of rare earth elements (REEs) have led to an increase in demand by the global market due to their multiple uses in industrial, medical and agricultural implementations. However, the scarcity of REEs and the harsh eco-unfriendly leaching processes from primary sources beside obliviousness to their recycling from secondary sources, together with the geopolitical situation, have created the need to develop a more sustainable mining strategy. Therefore, there is a growing interest in bio-hydrometallurgy, which may contribute to the scavenging of these strategic elements from low-grade resources in an environmentally friendly and economically feasible way as with copper and gold. Several prokaryotes and eukaryotes show the ability to leach REEs, however, the success in employing these microorganisms or their products in this process relays on several biotic and abiotic factors. This review focuses on the differences made by microorganisms in REEs leaching and fundamentally explains microbes-REEs interaction.


Subject(s)
Metals, Rare Earth/isolation & purification , Mining/methods , Bacteria/growth & development , Biodegradation, Environmental , Fungi/growth & development , Recycling , Renewable Energy
2.
World J Microbiol Biotechnol ; 35(6): 93, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31187335

ABSTRACT

Siderophores are extra-cellular inducible compounds produced by aerobic microorganisms and plants to overcome iron insolubility via its chelation and then uptake inside the cell. This work aims to study the characteristics of siderophore that is produced by a rhizosphere-inhabiting fungus. This fungus has been morphologically and molecularly identified as Aspergillus niger with the ability to produce 87% siderophore units. The obtained siderophore in PDB medium gave a positive result with tetrazolium test and a characteristic spectrum with a maximum absorbance at 450 nm in FeCl3 test that did not shift in response to different pH degrees (5-9). This indicates that the obtained siderophore is a trihydroxymate in nature. After purification, the FTIR and NMR analyses showed that the obtained siderophore is considered to be ferrichrome. The purified siderophore has been further evaluated as a tool to extract uranium, thorium and rare earth elements (REEs) from Egyptian phosphorites obtained from Abu Tartur Mine area. The inductively coupled plasma atomic emission spectroscopy analysis showed that the highest removal efficiency percentage was for uranium (69.5%), followed by samarium (66.7%), thorium (55%), lanthanum (51%), and cerium (50.1%). This result confirmed the ability of hydroxymate siderophores to chelate the aforementioned precious elements, a result that paves the way for bioleaching to replace abiotic techniques in order to save the cost of such elements in an environmentally friendly way.


Subject(s)
Aspergillus niger/isolation & purification , Aspergillus niger/metabolism , Siderophores/isolation & purification , Siderophores/metabolism , Soil Microbiology , Aspergillus niger/classification , Aspergillus niger/genetics , Egypt , Fatty Acids/analysis , Ferrichrome , Hydrogen-Ion Concentration , Iron , Minerals , Phosphates , Rhizosphere
3.
J Biol Chem ; 289(8): 5145-57, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24379410

ABSTRACT

Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (ß-FAD) in subunit ß. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD(+) complex structure revealed ß-FAD as acceptor of the hydride of NADH. The formed ß-FADH(-) is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach ß-FADH(-) by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, ß-FADH(•), immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH(-) that converts crotonyl-CoA to butyryl-CoA.


Subject(s)
Acidaminococcus/enzymology , Biocatalysis , Butyryl-CoA Dehydrogenase/metabolism , Electron-Transferring Flavoproteins/metabolism , Electrons , Butyryl-CoA Dehydrogenase/chemistry , Crystallography, X-Ray , Electron Transport , Electron-Transferring Flavoproteins/chemistry , Electrophoresis, Polyacrylamide Gel , Ferredoxins/chemistry , Ferredoxins/metabolism , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Flavins/chemistry , Flavins/metabolism , Kinetics , Models, Biological , Molecular Docking Simulation , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet
4.
Heliyon ; 10(1): e23710, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187267

ABSTRACT

Objectives: This study was conducted to evaluate the effect of ethanolic extract of propolis on antibacterial and microshear bond strength of glass ionomer restorations to dentin. Materials and methods: Conventional glass ionomer cement (Equia forte, GC Tokyo, Japan), resin-modified glass ionomer (Fuji II LC, GC Tokyo, Japan) and propolis powder (dried extract from honey bees) materials were used in this study. Both conventional glass ionomer and resin-modified glass ionomer were modified by two different concentrations of ethanolic extract of propolis (10 % and 25 % EEP). For antibacterial test, Streptococcus mutans strain was spread on agar petri dishes using a sterile swab. Discs of both glass ionomer restorative materials (without adding EEP, with 10 % EEP and with 25 % EEP) were fabricated within the agar plates. Antibacterial activity was evaluated by measuring the inhibition zones around each disc. For microshear bond strength test, 60 healthy human permanent molars were prepared by cutting occlusal surface and expose the dentin at the height of contour of all teeth then conditioned using poly acrylic acid conditioner, both glass ionomer restorative materials (without adding EEP, with 10 % EEP and with 25 % EEP) were mixed and applied on conditioned dentin surface by using tygon tube. Microshear bond strength was evaluated by the universal testing machine. Results: Two-way ANOVA test revealed that both glass ionomer type and different concentrations of EEP had significant effect on the antibacterial test results and microshear bond strength values (p < 0,05). Glass ionomer restorative material with 25%EEP had the highest antibacterial values whereas glass ionomer restorative material without modifications (control groups) had the lowest values. Resin-modified glass ionomer without any modification (control group) had the highest bond strength while resin-modified glass ionomer with 25%EEP had the lowest bond strength. Conclusions: Incorporation of ethanolic extract of propolis to glass ionomer restorative material increases the antibacterial effects of both conventional GIC and RMGI. Inspite of this advantage, it seems that it has deleterious effect on microshear bond strength to dentin.

5.
J Genet Eng Biotechnol ; 21(1): 17, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36780046

ABSTRACT

BACKGROUND: Applying microbial biostimulants during crop cultivation allows for higher sustainability levels. It reduces the need for fertilizers and environmental contaminants while enhancing plant quality. This study assessed 13 endophytic bacteria, 4 newly isolated, and 9 donated, for plant growth-promoting capabilities. Quantitative assessments of indole acetic acid (IAA), gibberellic acid (GA3), siderophores, ammonia, exopolysaccharides, volatile HCN, and phosphate solubilization, along with Bray-Curtis cluster analyses were performed. RESULTS: Upon the results  we selected RhizobiumMAP7, Brevibacillus DesertYSK, Pseudomonas MAP8, BacillusMAP3, Brevibacillus MAP, and Bacillus DeltaYSK to evaluate their effects on Lactuca sativa growth and pigmentation in a 30-day greenhouse pot experiment. Both Brevibacillus DesertYSK and Rhizobium MAP7surpassed other strains in growth promotional effects. They doubled shoot length (12 and 12.3 cm, respectively, when compared with 7 cm for control after 30 days), and fresh weight (0.079 and 0.084 g, respectively, when compared with 0.045 g for control after 30 days), and increased root length by at least 3-fold when compared with control (4.5 and 3.5 cm, respectively, when compared with 1.2 cm for control after 30 days). Chlorophyll content also exhibited at least a 2-fold significant increase in response to bacterization compared with control. CONCLUSIONS: This strain superiority was consistent with the in vitro assays data that showed strains capability as IAA and GA3producers. Also, strains were highly capable ammonia and siderophore producers and phosphate solubilizers, providing considerable hormone and nutrient levels for L. sativa plantsleading to improved growth parameters and appearance. These data support the notion that nodule-based bacteria are potential plant growth-promoting bacteria (PGPB) that may be used on a wider scale rather than just for legumes.

6.
Plants (Basel) ; 11(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35336618

ABSTRACT

Cyanobacteria comprise a good natural resource of a potential variety of neuro-chemicals, including acetylcholinesterase inhibitors essential for Alzheimer's disease treatment. Accordingly, eight different cyanobacterial species were isolated, identified, and evaluated on their growth on different standard nutrient media. It was found that the modified Navicula medium supported the highest growth of the test cyanobacteria. The effects of methylene chloride/methanol crude extracts of the test cyanobacteria on acetylcholinesterase activity were examined and compared. Anabaena variabilis (KU696637.1) crude extract recorded the highest acetylcholinesterase inhibition (62 ± 1.3%). Navicula medium chemical components were optimized through a Plackett-Burman factorial design. The biomass of Anabaena variabilis increased significantly when grown on the optimized medium compared to that of control. The chemical analysis of the fractions derived from Anabaena variabilis showed the presence of two compounds in significant amounts: the flavonoid 5,7-dihydroxy-2-phenyl-4H-chrome-4-one and the alkaloid 4-phenyl-2-(pyridin-3-yl) quinazoline. Molecular docking studies revealed that both compounds interact with the allosteric binding site of acetylcholinesterase at the periphery with π-π stackings with Tyr341 and Trp286 with good, predicted partition coefficient. The compounds obtained from this study open the door for promising drug candidates to treat Alzheimer's disease for their better pharmacodynamics and pharmacokinetic properties.

7.
Environ Pollut ; 315: 120356, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36220578

ABSTRACT

Heavy metals such as beryllium (Be) have been identified as toxic for plants with a negative impact on plant growth. Therefore, there is an urgent need for environmentally friendly techniques to reduce Be toxicity on plant growth and productivity. To this end, arbuscular mycorrhizal fungi (AMF) are widely applied to induce plant growth and stress tolerance. However, how AMF-plant symbiosis can support plants under Be stress has not been studied. Accordingly, we investigated the physiological and biochemical responses of AMF inoculated ryegrass and chickpea plants to Be stress. The associated changes in Be uptake and accumulation, photosynthesis, oxidative stress, carbon and nitrogen metabolism were studied. Soil contamination with Be induced higher Be accumulation, particularly in ryegrass, which consequentially reduced plant growth and photosynthesis. However, photorespiration and oxidative damage (H2O2 accumulation, lipid oxidation, and LOX activity) were increased, mainly in ryegrass. In both plant species, AMF inoculation reduced Be accumulation and mitigated growth inhibition and oxidative damage, but to a more extent in ryegrass. This could be explained by improved photosynthesis as well as the upregulation of osmoprotectants i.e., sucrose and proline biosynthesis pathways. The increase in proline level was consistent with higher nitrogen (N) metabolism as reflected by N level and nitrate reductase. Species-specific responses were recorded and supported by principal component analysis. This study provided insight into the mechanism of AMF's impact on Be-stressed ryegrass and chickpea plants. Hence, the current research suggested that AMF inoculation could be used as a viable strategy to mitigate Be phytotoxicity in ryegrass and chickpea plants.


Subject(s)
Cicer , Lolium , Mycorrhizae , Mycorrhizae/metabolism , Lolium/metabolism , Beryllium/metabolism , Hydrogen Peroxide/metabolism , Nitrogen/metabolism , Proline/metabolism
8.
Appl Environ Microbiol ; 76(18): 6032-7, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20656877

ABSTRACT

Enzymes catalyzing the conversion of organohalogen compounds are useful in the chemical industry and environmental technology. Here we report the occurrence of a new reduced flavin adenine dinucleotide (FAD) (FADH(2))-dependent enzyme that catalyzes the removal of a halogen atom from an unsaturated aliphatic organohalogen compound by the addition of a water molecule to the substrate. A soil bacterium, Pseudomonas sp. strain YL, inducibly produced a protein named Caa67(YL) when the cells were grown on 2-chloroacrylate (2-CAA). The caa67(YL) gene encoded a protein of 547 amino acid residues (M(r) of 59,301), which shared weak but significant sequence similarity with various flavoenzymes and contained a nucleotide-binding motif. We found that 2-CAA is converted into pyruvate when the reaction was carried out with purified Caa67(YL) in the presence of FAD and a reducing agent [NAD(P)H or sodium dithionite] under anaerobic conditions. The reducing agent was not stoichiometrically consumed during this reaction, suggesting that FADH(2) is conserved by regeneration in the catalytic cycle. When the reaction was carried out in the presence of H(2)(18)O, [(18)O]pyruvate was produced. These results indicate that Caa67(YL) catalyzes the hydration of 2-CAA to form 2-chloro-2-hydroxypropionate, which is chemically unstable and probably spontaneously dechlorinated to form pyruvate. 2-Bromoacrylate, but not other 2-CAA analogs such as acrylate and methacrylate, served as the substrate of Caa67(YL). Thus, we named this new enzyme 2-haloacrylate hydratase. The enzyme is very unusual in that it requires the reduced form of FAD for hydration, which involves no net change in the redox state of the coenzyme or substrate.


Subject(s)
Bacterial Proteins/metabolism , Hydro-Lyases/metabolism , Pseudomonas/enzymology , Water/metabolism , Acrylates , Base Sequence , Catalysis , DNA Primers/genetics , Dithionite , Electrophoresis, Polyacrylamide Gel , Flavin-Adenine Dinucleotide , Halogenation/physiology , Hydrogen-Ion Concentration , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology , Temperature
9.
Biology (Basel) ; 9(8)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824473

ABSTRACT

Plant facilitation has a pivotal role in regulating species coexistence, particularly under arid environments. The present study aimed to evaluate the facilitative effect of Calligonum polygonoides L. on its understory plants in coastal habitat. Forty Calligonum shrubs were investigated and the environmental data (soil temperature, moisture, pH, salinity, carbon and nitrogen content, and light intensity), vegetation composition, and diversity of associated species were recorded under- and outside canopies. Eight of the most frequent understory species were selected for evaluating their response to the facilitative effect of C. polygonoides. Bioactive ingredients of Calligonum roots were analyzed using gas chromatography-mass spectrometry (GC-MS), and mycorrhizal biodiversity in their rhizosphere soil was also assessed. The effect of Calligonum on understory plants ranged between facilitation and inhibition in an age-dependent manner. Old shrubs facilitated 18 and inhibited 18 associated species, while young shrubs facilitated 13 and inhibited 9 species. Calligonum ameliorated solar radiation and high-temperature stresses for the under canopy plants. Moreover, soil moisture was increased by 509.52% and 85.71%, while salinity was reduced by 47.62% and 23.81% under old and young shrubs, respectively. Soil contents of C and N were increased under canopy. This change in the microenvironment led to photosynthetic pigments induction in the majority of understory species. However, anthocyanin, proline contents, and antioxidant enzyme activities were reduced in plants under canopy. Thirteen mycorrhizal fungal species were identified in the rhizospheric soil of Calligonum with the predominance of Funneliformis mosseae. Thirty-one compounds were identified in Calligonum root extract in which pyrogallol and palmitic acid, which have antimicrobial and allelopathic activities, were the major components. The obtained results demonstrated that facilitation provided by Calligonum is mediated with multiple mechanisms and included a set of interrelated scenarios that took place in a species-specific manner.

10.
J Biosci Bioeng ; 105(4): 429-31, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18499064

ABSTRACT

(S)-2-Chloropropionate is a synthetic intermediate for phenoxypropionic acid herbicides. We constructed a system for asymmetric reduction of 2-chloroacrylate to produce (S)-2-chloropropionate with recombinant Escherichia coli cells producing 2-haloacrylate reductase from Burkholderia sp. WS and an NADPH regeneration system. The system provided 37.4 g/l (S)-2-chloropropionate in more than 99.9%e.e.


Subject(s)
Acrylates/metabolism , Bacterial Proteins/metabolism , Burkholderia/enzymology , Escherichia coli/enzymology , Glucose 1-Dehydrogenase/metabolism , Propionates/metabolism , Bacterial Proteins/genetics , Burkholderia/genetics , Escherichia coli/genetics , Glucose 1-Dehydrogenase/genetics , Hydrocarbons, Chlorinated , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL