ABSTRACT
The Hippo pathway and its downstream effectors, the transcriptional co-activators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), regulate organ growth and cell plasticity during animal development and regeneration. Remarkably, experimental activation of YAP/TAZ in the mouse can promote regeneration in organs with poor or compromised regenerative capacity, such as the adult heart and the liver and intestine of old or diseased mice. However, therapeutic YAP/TAZ activation may cause serious side effects. Most notably, YAP/TAZ are hyperactivated in human cancers, and prolonged activation of YAP/TAZ triggers cancer development in mice. Thus, can the power of YAP/TAZ to promote regeneration be harnessed in a safe way? Here, we review the role of Hippo signalling in animal regeneration, examine the promises and risks of YAP/TAZ activation for regenerative medicine and discuss strategies to activate YAP/TAZ for regenerative therapy while minimizing adverse side effects.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Animals , Humans , Regenerative Medicine/methodsABSTRACT
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications.
Subject(s)
Antimicrobial Peptides , Machine Learning , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Algorithms , Drug Discovery/methods , Amino Acid Sequence , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Computational Biology/methodsABSTRACT
In order to achieve a multifunctional compound with potential application in organic photonics and electronics, a multidonor benzothiadiazole derivative was rationally designed and synthesized employing microwave irradiation as energy source, increasing the process efficiency about yields and reaction times in comparison with conventional conditions. This powerful compound displayed solvatochromism and showed efficient behavior as red optical waveguide with low OLC around 10-2 â dB µm-1 and with the capacity of light transmission in two directions. In addition, the proposed derivative acted as efficient p-type semiconductor in organic field-effect transistors (OFETs) with hole mobilities up 10-1 â cm2 â V-1 s-1 . This corroborates its multifunctional character, thus making it a potential candidate to be applied in hybrid organic field-effect optical waveguides (OFEWs).
ABSTRACT
A series of donor-π-acceptor-π-donor (D-π-A-π-D) compounds based on naphthalendiimide (NDI) and perylenediimide (PDI) central cores combined with triphenylamine and phenylcarbazole donor groups have been synthesized, characterized and tested in top-contact/bottom gate organic field-effect transistors (OFETs). The results showed high electron mobilities, up to 0.3â cm2 V-1 s-1 , in the case of NDI derivatives and moderate values of around 10-3 â cm2 V-1 s-1 for PDI-based semiconductors. Quantum chemical calculations were performed in order to support the experimental data. The results suggest that adequate molecular characteristics and larger crystalline domains in NDI vs. PDI semiconducting films may be the reasons behind the enhanced electrical properties of NDI derivatives. Furthermore, when the lateral donor substituents are triphenylamine groups, the mobilities were slightly higher in comparison to phenylcarbazole donor groups due to an improved electron-donating character. Other characterization techniques, such as AFM, X-ray diffraction or spectroelectrochemistry, among others, have been performed to analyze supramolecular order, charge carriers' nature and stability, parameters closely related to charge transport characteristics.
ABSTRACT
A new series of donor-acceptor-donor (D-A-D) structures derived from arylethynyl 1H-benzo[d]imidazole was synthesized and processed into single crystals with the goal of testing such crystals' ability to act as optical waveguides. Some crystals displayed luminescence in the 550-600 nm range and optical waveguiding behavior with optical loss coefficients around 10-2 dB/µm, which indicated a notable light transport. The crystalline structure, confirmed by X-ray diffraction, contains internal channels that are important for light propagation, as we previously reported. The combination of a 1D assembly, a single crystal structure, and notable light emission properties with low losses from self-absorption made 1H-benzo[d]imidazole derivatives appealing compounds for optical waveguide applications.
ABSTRACT
BACKGROUND AND AIMS: The Hippo pathway and its downstream effectors YAP and TAZ (YAP/TAZ) are heralded as important regulators of organ growth and regeneration. However, different studies provided contradictory conclusions about their role during regeneration of different organs, ranging from promoting proliferation to inhibiting it. Here we resolve the function of YAP/TAZ during regeneration of the liver, where Hippo's role in growth control has been studied most intensely. METHODS: We evaluated liver regeneration after carbon tetrachloride toxic liver injury in mice with conditional deletion of Yap/Taz in hepatocytes and/or biliary epithelial cells, and measured the behavior of different cell types during regeneration by histology, RNA sequencing, and flow cytometry. RESULTS: We found that YAP/TAZ were activated in hepatocytes in response to carbon tetrachloride toxic injury. However, their targeted deletion in adult hepatocytes did not noticeably impair liver regeneration. In contrast, Yap/Taz deletion in adult bile ducts caused severe defects and delay in liver regeneration. Mechanistically, we showed that Yap/Taz mutant bile ducts degenerated, causing cholestasis, which stalled the recruitment of phagocytic macrophages and the removal of cellular corpses from injury sites. Elevated bile acids activated pregnane X receptor, which was sufficient to recapitulate the phenotype observed in mutant mice. CONCLUSIONS: Our data show that YAP/TAZ are practically dispensable in hepatocytes for liver development and regeneration. Rather, YAP/TAZ play an indirect role in liver regeneration by preserving bile duct integrity and securing immune cell recruitment and function.
Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Chemical and Drug Induced Liver Injury/pathology , Cholestasis/pathology , Liver Regeneration/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Bile Ducts/pathology , Carbon Tetrachloride/administration & dosage , Carbon Tetrachloride/toxicity , Cell Proliferation/genetics , Chemical and Drug Induced Liver Injury/complications , Cholestasis/etiology , Disease Models, Animal , Hepatocytes/drug effects , Hepatocytes/pathology , Hippo Signaling Pathway , Humans , Liver/drug effects , Liver/pathology , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , YAP-Signaling ProteinsABSTRACT
In this work, as an equivocal proof of the potential of microwave irradiation in organic synthesis, a complex pyrazine-decorated benzotriazole derivative that is challenging to prepare under conventional conditions has been obtained upon microwave irradiation, thus efficiently improving the process and yields, dramatically decreasing the reaction times and resulting in an environmentally friendly synthetic procedure. In addition, this useful derivative could be applied in organic electronics, specifically in organic field-effect transistors (OFETs), exhibiting the highest electron mobilities reported to date for benzotriazole discrete molecules, of around 10-2 cm2V-1s-1.
Subject(s)
Microwaves , Semiconductors , Electrons , Transistors, Electronic , TriazolesABSTRACT
Precise mechanical processing of optical microcrystals involves complex microscale operations viz. moving, bending, lifting, and cutting of crystals. Some of these mechanical operations can be implemented by applying mechanical force at specific points of the crystal to fabricate advanced crystalline optical junctions. Mechanically compliant flexible optical crystals are ideal candidates for the designing of such microoptical junctions. A vapor-phase growth of naturally bent optical waveguiding crystals of 1,4-bis(2-cyanophenylethynyl)benzene (1) on a surface forming different optical junctions is presented. In the solid-state, molecule 1 interacts with its neighbors via CHâ â â N hydrogen bonding and π-π stacking. The microcrystals deposited at a glass surface exhibit moderate flexibility due to substantial surface adherence energy. The obtained network crystals also display mechanical compliance when cut precisely with sharp atomic force microscope cantilever tip, making them ideal candidates for building innovative T- and Δ-shaped optical junctions with multiple outputs. The presented micromechanical processing technique can also be effectively used as a tool to fabricate single-crystal integrated photonic devices and circuits on suitable substrates.
ABSTRACT
A series of donor-π-acceptor-π-donor (D-π-A-π-D) benzoazole dyes with 2H-benzo[d][1,2,3]triazole or BTD cores have been prepared and their photophysical properties characterized. The properties of these compounds display remarkable differences, mainly as a result of the electron-donor substituent. Dyes with the best properties have visible-light absorption over λ=400â nm, large Stokes shifts in the range of about 3500-6400â cm-1 , and good fluorescence emission with quantum yields of up to 0.78. The two-photon absorption properties were also studied to establish the relationship between structure and properties in the different compounds synthesized. These results provided cross sections of up to 1500â GM, with a predominance of S2 âS0 transitions and a high charge-transfer character. Time-dependent DFT calculations supported the experimental results.
ABSTRACT
Primary liver cancer comprises a diverse group of liver tumors. The heterogeneity of these tumors is seen as one of the obstacles to finding an effective therapy. The Hippo pathway, with its downstream transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), has a decisive role in the carcinogenesis of primary liver cancer. Therefore, we examined the expression pattern of YAP and TAZ in 141 patients with hepatocellular carcinoma keratin 19 positive (HCC K19âº), hepatocellular carcinoma keratin 19 negative (HCC K19-), combined hepatocellularâ»cholangiocarcinoma carcinoma (cHCC-CCA), or cholangiocarcinoma (CCA). All cHCC-CCA and CCA patients showed high expression levels for YAP and TAZ, while only some patients of the HCC group were positive. Notably, we found that a histoscore of both markers is useful in the challenging diagnosis of cHCC-CCA. In addition, positivity for YAP and TAZ was observed in the hepatocellular and cholangiocellular components of cHCC-CCA, which suggests a single cell origin in cHCC-CCA. Within the K19- HCC group, our results demonstrate that the expression of YAP is a statistically significant predictor of poor prognosis when observed in the cytoplasm. Nuclear expression of TAZ is an even more specific and independent predictor of poor disease-free survival and overall survival of K19- HCC patients. Our results thus identify different levels of YAP/TAZ expression in various liver cancers that can be used for diagnostics.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Bile Duct Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/genetics , Phosphoproteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/pathology , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/mortality , Cholangiocarcinoma/pathology , Cytosol/metabolism , Cytosol/pathology , Female , Genetic Heterogeneity , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kaplan-Meier Estimate , Keratin-19/deficiency , Keratin-19/genetics , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Phosphoproteins/metabolism , Prognosis , Proportional Hazards Models , Retrospective Studies , Signal Transduction , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling ProteinsABSTRACT
Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.
Subject(s)
Adherens Junctions/metabolism , Cell Polarity/physiology , Drosophila Proteins/metabolism , Imaginal Discs/growth & development , Intracellular Signaling Peptides and Proteins/metabolism , Morphogenesis/physiology , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Trans-Activators/metabolism , Animals , Caco-2 Cells , Cadherins/genetics , Cell Adhesion Molecules/genetics , Crosses, Genetic , DNA Primers/genetics , Dogs , Drosophila , Drosophila Proteins/genetics , Gene Knockdown Techniques , Humans , Madin Darby Canine Kidney Cells , Membrane Proteins , RNA Interference , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins , alpha Catenin/geneticsABSTRACT
Vascular patterning involves sprouting of blood vessels, which is governed by orchestrated communication between cells in the surrounding tissue and endothelial cells (ECs) lining the blood vessels. Single ECs are selected for sprouting by hypoxia-induced stimuli and become the 'tip' or leader cell that guides new sprouts. The 'stalk' or trailing ECs proliferate for tube extension and lumenize the nascent vessel. Stalk and tip cells can dynamically switch their identities during this process in a Notch-dependent manner. Here, we review recent studies showing that bone morphogenetic protein (BMP) signaling coregulates Notch target genes in ECs. In particular, we focus on how Delta-like ligand 4 (DLL4)-Notch and BMP effector interplay may drive nonsynchronized oscillatory gene expression in ECs essential for setting sharp tip-stalk cell boundaries while sustaining a dynamic pool of nonsprouting ECs. Deeper knowledge about the coregulation of vessel plasticity in different vascular beds may result in refinement of anti-angiogenesis and vessel normalization therapies.
Subject(s)
Bone Morphogenetic Proteins/metabolism , Neovascularization, Physiologic , Receptors, Notch/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors , Blood Vessels/growth & development , Blood Vessels/metabolism , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Protein Binding , Signal Transduction , Smad Proteins/metabolismABSTRACT
The strength and spatiotemporal activity of Nodal signaling is tightly controlled in early implantation mouse embryos, including by autoregulation and feedback loops, and involves secreted and intracellular antagonists. These control mechanisms, which are established at the extra-embryonic/embryonic interfaces, are essential for anterior-posterior patterning of the epiblast and correct positioning of the primitive streak. Formation of an ectopic primitive streak, or streak expansion, has previously been reported in mutants lacking antagonists that target Nodal signaling. Here, we demonstrate that loss-of-function of a major bone morphogenetic protein (BMP) effector, Smad5, results in formation of an ectopic primitive streak-like structure in mutant amnion accompanied by ectopic Nodal expression. This suggests that BMP/Smad5 signaling contributes to negative regulation of Nodal. In cultured cells, we find that BMP-activated Smad5 antagonizes Nodal signaling by interfering with the Nodal-Smad2/4-Foxh1 autoregulatory pathway through the formation of an unusual BMP4-induced Smad complex containing Smad2 and Smad5. Quantitative expression analysis supports that ectopic Nodal expression in the Smad5 mutant amnion is induced by the Nodal autoregulatory loop and a slow positive-feedback loop. The latter involves BMP4 signaling and also induction of ectopic Wnt3. Ectopic activation of these Nodal feedback loops in the Smad5 mutant amnion results in the eventual formation of an ectopic primitive streak-like structure. We conclude that antagonism of Nodal signaling by BMP/Smad5 signaling prevents primitive streak formation in the amnion of normal mouse embryos.
Subject(s)
Amnion/metabolism , Bone Morphogenetic Proteins/metabolism , Nodal Protein/metabolism , Primitive Streak/metabolism , Smad5 Protein/metabolism , Amnion/cytology , Animals , Blotting, Western , Bone Morphogenetic Proteins/genetics , Cell Line , Female , Humans , Immunohistochemistry , Immunoprecipitation , In Situ Hybridization , Mice , Nodal Protein/genetics , Pregnancy , Primitive Streak/cytology , Reverse Transcriptase Polymerase Chain Reaction , Smad5 Protein/geneticsABSTRACT
Hyperactivation of YAP/TAZ, the Hippo pathway downstream effectors, is common in human cancer. The requirement of YAP/TAZ for cancer cell survival in preclinical models, prompted the development of pharmacological inhibitors that suppress their transcriptional activity. However, systemic YAP/TAZ inhibition may sometimes have unpredictable patient outcomes, with limited or even adverse effects because YAP/TAZ action is not simply tumor promoting but also tumor suppressive in some cell types. Here, we review the role of the Hippo pathway in distinct tumor cell populations, discuss the impact of inhibiting Hippo output on tumor growth, and examine current developments in YAP/TAZ inhibitors.
Subject(s)
Neoplasms , Signal Transduction , Humans , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Protein Serine-Threonine Kinases/metabolism , YAP-Signaling Proteins , Neoplasms/drug therapy , Neoplasms/geneticsABSTRACT
A set of novel Donor-Acceptor-Donor (D-A-D) benzoselenadiazole derivatives has been synthesized and crystallized in nanocrystals in order to explore the correlation between their chemical structure and the waveguided luminescent properties. The findings reveal that all crystals exhibit luminescence and active optical waveguiding, demonstrating the ability to adjust their luminescence within a broad spectral range of 550-700 nm depending on the donor group attached to the benzoselenadiazole core. Notably, a clear relationship exists between the HOMO-LUMO energy gaps of each compound and the color emission of the corresponding optical waveguides. These outcomes affirm the feasibility of modifying the color emission of organic waveguides through suitable chemical functionalization. Importantly, this study marks the first utilization of benzoseleniadiazole derivatives for such purposes, underscoring the originality of this research. In addition, the obtention of nanocrystals is a key tool for the implementation of miniaturized photonic devices.
ABSTRACT
Tracking cell death in vivo can enable a better understanding of the biological mechanisms underlying tissue homeostasis and disease. Unfortunately, existing cell death labeling methods lack compatibility with in vivo applications or suffer from low sensitivity, poor tissue penetration, and limited temporal resolution. Here, we fluorescently labeled dead cells in vivo with Trypan Blue (TBlue) to detect single scattered dead cells or to generate whole-mount three-dimensional maps of large areas of necrotic tissue during organ regeneration. TBlue effectively marked different types of cell death, including necrosis induced by CCl4 intoxication in the liver, necrosis caused by ischemia-reperfusion in the skin, and apoptosis triggered by BAX overexpression in hepatocytes. Moreover, due to its short circulating lifespan in blood, TBlue labeling allowed in vivo "pulse and chase" tracking of two temporally spaced populations of dying hepatocytes in regenerating mouse livers. Additionally, upon treatment with cisplatin, TBlue labeled dead cancer cells in livers with cholangiocarcinoma and dead thymocytes due to chemotherapy-induced toxicity, showcasing its utility in assessing anticancer therapies in preclinical models. Thus, TBlue is a sensitive and selective cell death marker for in vivo applications, facilitating the understanding of the fundamental role of cell death in normal biological processes and its implications in disease.
Subject(s)
Cell Death , Trypan Blue , Animals , Mice , Cell Death/drug effects , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/metabolism , Humans , Neoplasms/pathology , Mice, Inbred C57BL , Liver Regeneration/drug effects , Liver/pathology , Liver/drug effects , Cell Tracking/methods , Apoptosis/drug effects , Imaging, Three-Dimensional , Regeneration/drug effects , Necrosis , MaleABSTRACT
This review article provides an in-depth exploration of the role of gels in the fields of organic electronics and photonics, focusing on their unique properties and applications. Despite their remarkable potential, gel-based innovations remain relatively uncharted in these domains. This brief review aims to bridge the knowledge gap by shedding light on the diverse roles that gels can fulfil in the enhancement of organic electronic and photonic devices. From flexible electronics to light-emitting materials, we delve into specific examples of gel applications, highlighting their versatility and promising outcomes. This work serves as an indispensable resource for researchers interested in harnessing the transformative power of gels within these cutting-edge fields. The objective of this review is to raise awareness about the overlooked research potential of gels in optoelectronic materials, which have somewhat diminished in recent years.
ABSTRACT
A method based on the photographic recording of the power distribution laterally diffused by cationic-network (CN) hydrogel waveguides is first checked against the well-established cut-back method and then used to determine the different contributions to optical power attenuation along the hydrogel-based waveguide. Absorption and scattering loss coefficients are determined for 450 nm, 532 nm and 633 nm excitation. The excellent optical loss values obtained (0.32-1.95 dB/cm), similar to others previously described, indicate their potential application as waveguides in different fields, including soft robotic and light-based therapies.
ABSTRACT
Three simple bisamide derivatives (G1, G2 and G3) with different structural modifications were synthesized with easy synthetic procedures in order to test their gel behaviour. The outcomes showed that hydrogen bonding was essential in gel formation; for this reason, only G1 provided satisfactory gels. The presence of methoxy groups in G2 and the alkyl chains in G3 hindered the hydrogen bonding between N-H and C=O that occurred G1. In addition, G1 provided thermally and mechanical stable gels, as confirmed with Tsol and rheology experiments. The gels of G1 were also responsive under pH stimuli and were employed as a vehicle for drug crystallization, causing a change in polymorphism in the presence of flufenamic acid and therefore providing the most thermodynamically stable form III compared with metastable form IV obtained from solution crystallization.
ABSTRACT
Formation of all-carbon-substituted quaternary carbons is a key challenge in organic and medicinal chemistry. We report a cobalt-catalyzed C(sp3)-C(sp3) cross-coupling that allows for the introduction of benzyl, heteroarylmethylzinc and allyl groups to halo-carbonyl substrates. The cross-coupling reaction is selective for C(sp3)-over C(sp2)-halides, in contrast to most used catalytic metals, and allows access to novel scaffolds of pharmaceutical interest. NMR mechanistic studies suggest the presence of Co(0) complexes as catalytic species.