Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J Neurosci ; 42(30): 5830-5842, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35701161

ABSTRACT

For many decades, synaptic plasticity was believed to be restricted to excitatory transmission. However, in recent years, this view started to change, and now it is recognized that GABAergic synapses show distinct forms of activity-dependent long-term plasticity, but the underlying mechanisms remain obscure. Herein, we asked whether signaling mediated by ß1 or ß3 subunit-containing integrins might be involved in regulating the efficacy of GABAergic synapses, including the NMDA receptor-dependent inhibitory long-term potentiation (iLTP) in the hippocampus. We found that activation of ß3 integrin with fibrinogen induced a stable depression, whereas inhibition of ß1 integrin potentiated GABAergic synapses at CA1 pyramidal neurons in male mice. Additionally, compounds that interfere with the interaction of ß1 or ß3 integrins with extracellular matrix blocked the induction of NMDA-iLTP. In conclusion, we provide the first evidence that integrins are key players in regulating the endogenous modulatory mechanisms of GABAergic inhibition and plasticity in the hippocampus.SIGNIFICANCE STATEMENT Epilepsy, schizophrenia, and anxiety are just a few medical conditions associated with dysfunctional inhibitory synaptic transmission. GABAergic synapses are known for their extraordinary susceptibility to modulation by endogenous factors and exogenous pharmacological agents. We describe here that integrins, adhesion proteins, play a key role in the modulation of inhibitory synaptic transmission. Specifically, we show that interference with integrin-dependent adhesion results in a variety of effects on the amplitude and frequency of GABAergic mIPSCs. Activation of ß3 subunit-containing integrins induces inhibitory long-term depression, whereas the inhibition of ß1 subunit-containing integrins induces iLTP. Our results unveil an important mechanism controlling synaptic inhibition, which opens new avenues into the usage of integrin-aimed pharmaceuticals as modulators of GABAergic synapses.


Subject(s)
Integrins , Synaptic Transmission , Animals , Hippocampus/metabolism , Integrins/metabolism , Male , Mice , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Synapses/physiology , Synaptic Transmission/physiology
2.
Cell Mol Life Sci ; 78(5): 2279-2298, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32959071

ABSTRACT

Learning and memory are known to depend on synaptic plasticity. Whereas the involvement of plastic changes at excitatory synapses is well established, plasticity mechanisms at inhibitory synapses only start to be discovered. Extracellular proteolysis is known to be a key factor in glutamatergic plasticity but nothing is known about its role at GABAergic synapses. We reveal that pharmacological inhibition of MMP3 activity or genetic knockout of the Mmp3 gene abolishes induction of postsynaptic iLTP. Moreover, the application of exogenous active MMP3 mimics major iLTP manifestations: increased mIPSCs amplitude, enlargement of synaptic gephyrin clusters, and a decrease in the diffusion coefficient of synaptic GABAA receptors that favors their entrapment within the synapse. Finally, we found that MMP3 deficient mice show faster spatial learning in Morris water maze and enhanced contextual fear conditioning. We conclude that MMP3 plays a key role in iLTP mechanisms and in the behaviors that presumably in part depend on GABAergic plasticity.


Subject(s)
Hippocampus/physiology , Matrix Metalloproteinase 3/metabolism , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Spatial Learning/physiology , Synapses/physiology , Animals , Female , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Male , Matrix Metalloproteinase 3/genetics , Maze Learning/physiology , Mice, Inbred C57BL , Mice, Knockout , N-Methylaspartate/pharmacology , Neural Inhibition/genetics , Neuronal Plasticity/genetics , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Synapses/genetics
3.
Cereb Cortex ; 29(1): 283-304, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29228131

ABSTRACT

In the central nervous system, several forms of experience-dependent plasticity, learning and memory require the activity-dependent control of synaptic efficacy. Despite substantial progress in describing synaptic plasticity, mechanisms related to heterogeneity of synaptic functions at local circuits remain elusive. Here we studied the functional and molecular aspects of hippocampal circuit plasticity by analyzing excitatory synapses at basal and apical dendrites of mouse hippocampal pyramidal cells (CA1 region) in acute brain slices. In the past decade, activity of metalloproteinases (MMPs) has been implicated as a widespread and critical factor in plasticity mechanisms at various projections in the CNS. However, in the present study we discovered that in striking contrast to apical dendrites, synapses located within basal dendrites undergo MMP-independent synaptic potentiation. We demonstrate that synapse-specific molecular pathway allowing MMPs to rapidly upregulate function of NMDARs in stratum radiatum involved protease activated receptor 1 and intracellular kinases and GTPases activity. In contrast, MMP-independent scaling of synaptic strength in stratum oriens involved dopamine D1/D5 receptors and Src kinases. Results of this study reveal that 2 neighboring synaptic systems differ significantly in extracellular and intracellular cascades that control synaptic gain and provide long-searched transduction pathways relevant for MMP-dependent synaptic plasticity.


Subject(s)
Dendrites/physiology , Extracellular Fluid/physiology , Hippocampus/physiology , Intracellular Fluid/physiology , Pyramidal Cells/physiology , Synaptic Potentials/physiology , Animals , Hippocampus/cytology , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Synapses/physiology
4.
J Neurosci ; 37(5): 1240-1256, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28069922

ABSTRACT

Long-term potentiation (LTP) is widely perceived as a memory substrate and in the hippocampal CA3-CA1 pathway, distinct forms of LTP depend on NMDA receptors (nmdaLTP) or L-type voltage-gated calcium channels (vdccLTP). LTP is also known to be effectively regulated by extracellular proteolysis that is mediated by various enzymes. Herein, we investigated whether in mice hippocampal slices these distinct forms of LTP are specifically regulated by different metalloproteinases (MMPs). We found that MMP-3 inhibition or knock-out impaired late-phase LTP in the CA3-CA1 pathway. Interestingly, late-phase LTP was also decreased by MMP-9 blockade. When both MMP-3 and MMP-9 were inhibited, both early- and late-phase LTP was impaired. Using immunoblotting, in situ zymography, and immunofluorescence, we found that LTP induction was associated with an increase in MMP-3 expression and activity in CA1 stratum radiatum. MMP-3 inhibition and knock-out prevented the induction of vdccLTP, with no effect on nmdaLTP. L-type channel-dependent LTP is known to be impaired by hyaluronic acid digestion. We found that slice treatment with hyaluronidase occluded the effect of MMP-3 blockade on LTP, further confirming a critical role for MMP-3 in this form of LTP. In contrast to the CA3-CA1 pathway, LTP in the mossy fiber-CA3 projection did not depend on MMP-3, indicating the pathway specificity of the actions of MMPs. Overall, our study indicates that the activation of perisynaptic MMP-3 supports L-type channel-dependent LTP in the CA1 region, whereas nmdaLTP depends solely on MMP-9. SIGNIFICANCE STATEMENT: Various types of long-term potentiation (LTP) are correlated with distinct phases of memory formation and retrieval, but the underlying molecular signaling pathways remain poorly understood. Extracellular proteases have emerged as key players in neuroplasticity phenomena. The present study found that L-type calcium channel-dependent LTP in the CA3-CA1 hippocampal projection is critically regulated by the activity of matrix metalloprotease 3 (MMP-3), in contrast to NMDAR-dependent LTP regulated by MMP-9. Moreover, the induction of LTP was associated with an increase in MMP-3 expression and activity. Finally, we found that the digestion of hyaluronan, a principal extracellular matrix component, disrupted the MMP-3-dependent component of LTP. These results indicate that distinct MMPs might act as molecular switches for specific types of LTP.


Subject(s)
Calcium Channels, L-Type/drug effects , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Metalloproteases/physiology , Receptors, N-Methyl-D-Aspartate/drug effects , Animals , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Calcium Channels, L-Type/physiology , Hyaluronic Acid/pharmacology , Hyaluronoglucosaminidase/pharmacology , In Vitro Techniques , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Metalloproteases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mossy Fibers, Hippocampal/drug effects , Neuronal Plasticity/drug effects , Proteolysis , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/physiology
5.
J Neurosci ; 34(9): 3193-209, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24573278

ABSTRACT

GABA receptors (GABAARs) mediate inhibition in the adult brain. These channels are heteropentamers and their ligand binding sites are localized at the ß+ / α- interfaces. As expected, mutations of binding-site residues affect binding kinetics but accumulating evidence indicates that gating is also altered, although the underlying mechanisms are unclear. We investigated the impact of the hydrophobic box residue localized at α1(-), F64 (α1F64), on the binding and gating of rat recombinant α1ß1γ2 receptors. The analysis of current responses to rapid agonist applications confirmed a marked effect of α1F64 mutations on agonist binding and revealed surprisingly strong effects on gating, including the disappearance of rapid desensitization, the slowing of current onset, and accelerated deactivation. Moreover, nonstationary variance analysis revealed that the α1F64C mutation dramatically reduced the maximum open probability without altering channel conductance. Interestingly, for wild-type receptors, responses to saturating concentration of a partial agonist, P4S, showed no rapid desensitization, similar to GABA-evoked responses mediated by α1F64C mutants. For the α1F64L mutation, the application of the high-affinity agonist muscimol partially rescued rapid desensitization compared with responses evoked by GABA. These findings suggest that α1F64 mutations do not disrupt desensitization mechanisms but rather affect other gating features that obscure it. Model simulations indicated that all of our observations related to α1F64 mutations could be properly reproduced by altering the flipped state transitions that occurred after agonist binding but preceded opening. In conclusion, we propose that the α1F64 residue may participate in linking binding and gating by influencing flipping kinetics.


Subject(s)
Binding Sites/genetics , Ion Channel Gating/physiology , Mutation/genetics , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Animals , Binding Sites/drug effects , Cell Line, Transformed , Computer Simulation , Dose-Response Relationship, Drug , GABA Agents/pharmacology , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Kinetics , Lysine/genetics , Mutagenesis, Site-Directed , Patch-Clamp Techniques , Phenylalanine/genetics , Protein Binding/genetics , Protein Structure, Tertiary/physiology , Rats , Receptors, GABA-A/genetics , Transfection , gamma-Aminobutyric Acid/pharmacology
6.
J Neurosci Res ; 93(9): 1330-44, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25789967

ABSTRACT

Brain oscillatory activity is considered an essential aspect of brain function, and its frequency can vary from <1 Hz to >200 Hz, depending on the brain states and projection. Episodes of rhythmic activity accompany hippocampus-dependent learning and memory in vivo. Therefore, long-term synaptic potentiation (LTP) and long-term depression, which are considered viable substrates of learning and memory, are often experimentally studied in paradigms of patterned high-frequency (>50 Hz) and low-frequency (<5 Hz) stimulation. However, the impact of intermediate frequencies on neuronal plasticity remains less well understood. In particular, hippocampal neurons are specifically tuned for activity at θ frequency (4-8 Hz); this band contributes significantly to electroencephalographic signals, and it is likely to be involved in shaping synaptic strength in hippocampal circuits. Here, we review in vitro and in vivo studies showing that variation of θ-activity duration may affect long-term modification of synaptic strength and neuronal excitability in the hippocampus. Such θ-pulse-induced neuronal plasticity 1) is long-lasting, 2) may be built on previously stabilized potentiation in the synapse, 3) may produce opposite changes in synaptic strength, and 4) requires complex molecular machinery. Apparently innocuous episodes of low-frequency synaptic activity may have a profound impact on network signaling, thereby contributing to information processing in the hippocampus and beyond. In addition, θ-pulse-induced LTP might be an advantageous protocol in studies of specific molecular mechanisms of synaptic plasticity.


Subject(s)
Hippocampus/cytology , Hippocampus/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Theta Rhythm/physiology , Humans
7.
Hippocampus ; 24(2): 135-53, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24115249

ABSTRACT

Matrix metalloproteases (MMP) play a pivotal role in long-term synaptic plasticity, learning, and memory. The roles of different MMP subtypes are emerging, but the proteolytic activity of certain MMPs was shown to support these processes through the structural and functional modification of hippocampal Schaeffer collateral and mossy fiber (MF) synapses. However, certain patterns of synaptic activity are additionally associated with non-synaptic changes, such as the scaling of neuronal excitability. However, the extent to which MMPs affect this process remains unknown. We determined whether MMP activity interferes with excitatory post-synaptic potential EPSP-to-spike (E-S) coupling under conditions of varying synaptic activity. We evoked short- and long-term synaptic plasticity at associational/commissural (A/C) synapses of CA3 pyramidal neurons and simultaneously recorded population spikes (PSs) and EPSPs in acute rat (P30-60) brain slices in the presence of various MMP inhibitors. We found that MMP inhibition significantly reduced E-S coupling and shortened the PS latency associated with 4× 100 Hz stimulation or paired burst activity of MF-CA3 and A/C synapses. Moreover, MMP inhibition interfered with the scaling of amplitude of measured signals during high-frequency trains, thus affecting the induction of long-term potentiation (LTP). The inhibition of L-type voltage-gated calcium channels with 20 µM nifedipine or GABA-A receptors with 1-30 µM picrotoxin did not occlude the effects of MMP inhibitors. However, MMP inhibition significantly reduced the LTP of NMDA receptor-mediated EPSPs. Finally, the analysis of LTP saturation with multiple single (1× 100 Hz) or packed (4× 100 Hz) trains indicated that MMPs support E-S coupling evoked by selected synaptic activity patterns and set the ceiling for tetanically evoked E-S LTP. In conclusion, the activity of MMPs, particularly MMP-3, regulated the magnitude of EPSPs and spike plasticity in the CA3 network and may affect information processing. Our data provide a novel link between MMP activity and neural excitability. Therefore, by limiting the number of firing neurons, MMP may functionally act beyond the synapse.


Subject(s)
Action Potentials/radiation effects , CA3 Region, Hippocampal/cytology , Excitatory Postsynaptic Potentials/physiology , Matrix Metalloproteinases/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Action Potentials/drug effects , Analysis of Variance , Animals , Biophysics , Electric Stimulation , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , GABA Antagonists/pharmacology , In Vitro Techniques , Neuronal Plasticity/drug effects , Picrotoxin/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Synapses/drug effects , Valine/analogs & derivatives , Valine/pharmacology
8.
Sci Rep ; 14(1): 20463, 2024 09 03.
Article in English | MEDLINE | ID: mdl-39242672

ABSTRACT

Sensory experiences and learning induce long-lasting changes in both excitatory and inhibitory synapses, thereby providing a crucial substrate for memory. However, the co-tuning of excitatory long-term potentiation (eLTP) or depression (eLTD) with the simultaneous changes at inhibitory synapses (iLTP/iLTD) remains unclear. Herein, we investigated the co-expression of NMDA-induced synaptic plasticity at excitatory and inhibitory synapses in hippocampal CA1 pyramidal cells (PCs) using a combination of electrophysiological, optogenetic, and pharmacological approaches. We found that inhibitory inputs from somatostatin (SST) and parvalbumin (PV)-positive interneurons onto CA1 PCs display input-specific long-term plastic changes following transient NMDA receptor activation. Notably, synapses from SST-positive interneurons consistently exhibited iLTP, irrespective of the direction of excitatory plasticity, whereas synapses from PV-positive interneurons predominantly showed iLTP concurrent with eLTP, rather than eLTD. As neuroplasticity is known to depend on the extracellular matrix, we tested the impact of metalloproteinases (MMP) inhibition. MMP3 blockade interfered with GABAergic plasticity for all inhibitory inputs, whereas MMP9 inhibition selectively blocked eLTP and iLTP in SST-CA1PC synapses co-occurring with eLTP but not eLTD. These findings demonstrate the dissociation of excitatory and inhibitory plasticity co-expression. We propose that these mechanisms of plasticity co-expression may be involved in maintaining excitation-inhibition balance and modulating neuronal integration modes.


Subject(s)
Interneurons , Neuronal Plasticity , Pyramidal Cells , Animals , Neuronal Plasticity/physiology , Interneurons/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , N-Methylaspartate/metabolism , N-Methylaspartate/pharmacology , Hippocampus/metabolism , Hippocampus/physiology , Parvalbumins/metabolism , Male , Mice , Somatostatin/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synapses/physiology , Long-Term Potentiation , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics
9.
Hippocampus ; 23(6): 529-43, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23418057

ABSTRACT

Mechanisms of synaptic plasticity involve proteolytic activity mediated by a complex system of proteases, including members of metalloproteinase (MMP) family. In particular, MMP-9 is critical in LTP maintenance in the Schaffer collateral-CA1 pathway and in the acquisition of hippocampus-dependent memory. Recent studies from this laboratory revealed that in the mossy fiber-CA3 (MF-CA3) projection, where LTP induction and expression are largely presynaptic, MMPs blockade disrupts LTP maintenance and that LTP induction is associated with increased MMP-9 expression. Here we used acute brain slices from MMP-9 knock-out mice and transgenic rats overexpressing MMP-9 to determine how manipulations in endogenous MMP-9 affect LTP in the MF-CA3 projection. Both types of transgenic models showed a normal basal synaptic transmission and short-term plasticity. Interestingly, the maintenance of LTP induced in slices from knock-out mice and overexpressing rats was nearly abolished. However, in the presence of active MMP-9, a gradual fEPSP autopotentiation was observed and tetanization evoked a marked LTP in knock-out mice. Additionally, in MMP-9-treated slices from wild-type mice, fEPSP autopotentiation also occurred and partially occluded LTP. This indicates that exogenous protease can restore LTP in null mice whereas in the wild-type, MMP-9 excess impairs LTP. We expected that LTP maintenance in transgenic rats could be re-established by a partial MMP blockade but non-saturating concentrations of MMP inhibitor were ineffective. In conclusion, we demonstrate that LTP maintenance in MF-CA3 pathway requires fine-tuned MMP-9 activity and raises the possibility that altered MMP-9 level might be detrimental for cognitive processes as observed in some neuropathologies.


Subject(s)
CA3 Region, Hippocampal/enzymology , Long-Term Potentiation/physiology , Matrix Metalloproteinase 9/biosynthesis , Mossy Fibers, Hippocampal/enzymology , Animals , Enzyme Activation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Pathways/physiology , Organ Culture Techniques , Proteolysis , Rats , Rats, Transgenic , Rats, Wistar
10.
J Cell Sci ; 124(Pt 19): 3369-80, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21896646

ABSTRACT

An increasing body of data has shown that matrix metalloproteinase-9 (MMP-9), an extracellularly acting, Zn(2+)-dependent endopeptidase, is important not only for pathologies of the central nervous system but also for neuronal plasticity. Here, we use three independent experimental models to show that enzymatic activity of MMP-9 causes elongation and thinning of dendritic spines in the hippocampal neurons. These models are: a recently developed transgenic rat overexpressing autoactivating MMP-9, dissociated neuronal cultures, and organotypic neuronal cultures treated with recombinant autoactivating MMP-9. This dendritic effect is mediated by integrin ß1 signalling. MMP-9 treatment also produces a change in the decay time of miniature synaptic currents; however, it does not change the abundance and localization of synaptic markers in dendritic protrusions. Our results, considered together with several recent studies, strongly imply that MMP-9 is functionally involved in synaptic remodelling.


Subject(s)
Cell Shape , Dendritic Spines/physiology , Excitatory Postsynaptic Potentials/drug effects , Matrix Metalloproteinase 9/metabolism , Animals , Cells, Cultured , Chromatography, Affinity , Dendritic Spines/metabolism , Enzyme Assays , Hippocampus/cytology , Hippocampus/metabolism , Integrin beta1/metabolism , Matrix Metalloproteinase 9/isolation & purification , Matrix Metalloproteinase 9/pharmacology , Microscopy, Fluorescence , Nerve Tissue Proteins/metabolism , Patch-Clamp Techniques , Presynaptic Terminals/metabolism , Primary Cell Culture , Rats , Rats, Transgenic , Rats, Wistar , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Tissue Culture Techniques
11.
Mol Cell Neurosci ; 50(2): 147-59, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22555058

ABSTRACT

Matrix Metalloproteinases (MMPs) are a family of endopeptidases known to process extracellular proteins. In the last decade, studies carried out mainly on the Schaffer collateral-CA1 hippocampal projection have provided solid evidence that MMPs regulate synaptic plasticity and learning. Recently, our group has shown that MMP blockade disrupts LTP maintenance also in the mossy fiber-CA3 (mf-CA3) projection (Wojtowicz and Mozrzymas, 2010), where LTP mechanisms are profoundly different (NMDAR-independent and presynaptic expression site). However, how plasticity of this pathway correlates with activity and expression of MMPs remains unknown. Interestingly, several potential MMP substrates (especially of gelatinases) are localized intracellularly but little is known about MMP activity in this compartment. In the present study we have asked whether LTP is associated with the expression and activity of gelatinases in apparent intra- and extracellular compartments along mf-CA3 projection. In situ zymography showed that LTP induction was associated with increased gelatinases activity in the cytoplasm of the hilar and CA3 neurons. Using gelatin zymography, immunohistochemistry and immunofluorescent staining we found that this effect was due to de novo synthesis and activation of MMP-9 which, 2-3h after LTP induction was particularly evident in the cytoplasm. In contrast, MMP-2 was localized preferentially in the nuclei and was not affected by LTP induction. In conclusion, we demonstrate that LTP induction in the mf-CA3 pathway correlates with increased expression and activity of MMP-9 and provide the first evidence that this increase is particularly evident in the neuronal cytoplasm and nucleus.


Subject(s)
CA3 Region, Hippocampal/physiology , Long-Term Potentiation/physiology , Matrix Metalloproteinase 9/biosynthesis , Matrix Metalloproteinases/metabolism , Mossy Fibers, Hippocampal/physiology , Animals , CA3 Region, Hippocampal/enzymology , Excitatory Postsynaptic Potentials/physiology , Matrix Metalloproteinase 9/metabolism , Mossy Fibers, Hippocampal/enzymology , Rats , Rats, Wistar
12.
Front Cell Neurosci ; 17: 1193383, 2023.
Article in English | MEDLINE | ID: mdl-37448697

ABSTRACT

GABAA receptors present in extrasynaptic areas mediate tonic inhibition in hippocampal neurons regulating the performance of neural networks. In this study, we investigated the effect of NMDA-induced plasticity on tonic inhibition in somatostatin- and parvalbumin-containing interneurons. Using pharmacological methods and transgenic mice (SST-Cre/PV-Cre x Ai14), we induced the plasticity of GABAergic transmission in somatostatin- and parvalbumin-containing interneurons by a brief (3 min) application of NMDA. In the whole-cell patch-clamp configuration, we measured tonic currents enhanced by specific agonists (etomidate or gaboxadol). Furthermore, in both the control and NMDA-treated groups, we examined to what extent these changes depend on the regulation of distinct subtypes of GABAA receptors. Tonic conductance in the somatostatin-containing (SST+) interneurons is enhanced after NMDA application, and the observed effect is associated with an increased content of α5-containing GABAARs. Both fast-spiking and non-fast-spiking parvalbumin-positive (PV+) cells showed a reduction of tonic inhibition after plasticity induction. This effect was accompanied in both PV+ interneuron types by a strongly reduced proportion of δ-subunit-containing GABAARs and a relatively small increase in currents mediated by α5-containing GABAARs. Both somatostatin- and parvalbumin-containing interneurons show cell type-dependent and opposite sign plasticity of tonic inhibition. The underlying mechanisms depend on the cell-specific balance of plastic changes in the contents of α5 and δ subunit-containing GABAARs.

13.
Sci Rep ; 13(1): 5079, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36977728

ABSTRACT

It is known that GABAergic transmission onto pyramidal neurons shows different forms of plasticity. However, GABAergic cells innervate also other inhibitory interneurons and plasticity phenomena at these projections remain largely unknown. Several mechanisms underlying plastic changes, both at inhibitory and excitatory synapses, show dependence on integrins, key proteins mediating interaction between intra- and extracellular environment. We thus used hippocampal slices to address the impact of integrins on long-term plasticity of GABAergic synapses on specific inhibitory interneurons (containing parvalbumin, PV + or somatostatin, SST +) known to innervate distinct parts of principal cells. Administration of RGD sequence-containing peptide induced inhibitory long-term potentiation (iLTP) at fast-spiking (FS) PV + as well as on SST + interneurons. Interestingly, treatment with a more specific peptide GA(C)RRETAWA(C)GA (RRETAWA), affecting α5ß1 integrins, resulted in iLTP in SST + and iLTD in FS PV + interneurons. Brief exposure to NMDA is known to induce iLTP at GABAergic synapses on pyramidal cells. Intriguingly, application of this protocol for considered interneurons evoked iLTP in SST + and iLTD in PV + interneurons. Moreover, we showed that in SST + cells, NMDA-evoked iLTP depends on the incorporation of GABAA receptors containing α5 subunit to the synapses, and this iLTP is occluded by RRETAWA peptide, indicating a key role of α5ß1 integrins. Altogether, our results revealed that plasticity of inhibitory synapses at GABAergic cells shows interneuron-specificity and show differences in the underlying integrin-dependent mechanisms. This is the first evidence that neuronal disinhibition may be a highly plastic process depending on interneuron type and integrins' activity.


Subject(s)
Integrins , N-Methylaspartate , Integrins/metabolism , N-Methylaspartate/metabolism , Hippocampus/metabolism , Synapses/metabolism , Interneurons/metabolism , Pyramidal Cells/metabolism , Receptors, GABA-A/metabolism , Somatostatin/metabolism , Parvalbumins/metabolism , Neuronal Plasticity/physiology , CA1 Region, Hippocampal/metabolism
14.
Eur J Pharmacol ; 947: 175664, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36934960

ABSTRACT

GABAA receptors (gamma-aminobutyric acid type A receptors) are pentameric ligand-gated ion channels mediating inhibition in adult mammalian brains. Their static structure has been intensely studied in the past years but the underlying molecular activatory mechanisms remain obscure. The interface between extracellular and transmembrane domains has been recognized as a key player in the receptor gating. However, the role of the valine 53 in the ß1-ß2 loop of the principal subunit (ß2) remains controversial showing differences compared to homologous residues in some cys-loop counterparts such as nAChR. To address the role of the ß2V53 residue in the α1ß2γ2L receptor gating, we performed high resolution macroscopic and single-channel recordings. To explore underlying molecular mechanisms a variety of substituting amino acids were investigated: Glutamate and Lysine (different electric charge), Alanine (aliphatic, larger than Valine) and Histidine (same residue as in homologous α1H55). We report that mutation of the ß2V53 residue results in alterations of nearly all gating transitions including opening/closing, preactivation and desensitization. A dramatic gating impairment was observed for glutamate substitution (ß2V53E) but ß2V53K mutation had a weak effect. The impact of histidine substitution was also small while ß2V53A markedly affected the receptor but to a smaller extent than ß2V53E. Considering available structures in desensitized and bicuculline blocked shut states we propose that strongly detrimental effect of ß2V53E mutation on receptor activation results from electrostatic interaction between the glutamate and ß2K274 on the loop M2-M3 which stabilizes the receptor in the shut state. We conclude that ß2V53 is strongly involved in mechanisms underlying the receptor gating.


Subject(s)
Receptors, GABA-A , Valine , Animals , Receptors, GABA-A/metabolism , Histidine , Mutation , Glutamates , Mammals
15.
Life Sci ; 308: 120943, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36096246

ABSTRACT

AIMS: GABAA receptors belong to Cys-loop ion channel family and mediate inhibition in the brain. Despite the abundance of structural data on receptor structure, the molecular scenarios of activation are unknown. In this study we investigated the role of a ß2P273 residue in channel gating transitions. This residue is located in a central position of the M2-M3 linker of the interdomain interface, expected to be predisposed to interact with another interfacial element, the ß1-ß2 loop of the extracellular side. The interactions occurring on this interface have been reported to couple agonist binding to channel gating. MAIN METHODS: We recorded micro- and macroscopic current responses of recombinant GABAA receptors mutated at the ß2P273 residue (to A, K, E) to saturating GABA. Electrophysiological data served as basis to kinetic modeling, used to decipher which gating transition were affected by mutations. KEY FINDINGS: Mutations of this residue impaired macroscopic desensitization and accelerated current deactivation with P273E mutant showing greatest deviation from wild-type. Single-channel analysis revealed alterations mainly in short-lived shut times and shortening of openings, resulting in dramatic changes in intraburst open probability. Kinetic modeling indicated that ß2P273 mutants show diminished entry into desensitized and open states as well as faster channel closing transitions. SIGNIFICANCE: In conclusion, we demonstrate that ß2P273 of the M2-M3 linker is a crucial element of the ECD-TMD interface regulating the receptor's ability to undergo late gating transitions. Henceforth, this region could be an important target for new pharmacological tools affecting GABAAR-mediated inhibition.


Subject(s)
Receptors, GABA-A , gamma-Aminobutyric Acid , Ion Channel Gating/genetics , Patch-Clamp Techniques , Proline , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism
16.
ACS Chem Neurosci ; 13(21): 3044-3056, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36219829

ABSTRACT

Cys-loop receptors are a superfamily of transmembrane, pentameric receptors that play a crucial role in mammalian CNS signaling. Physiological activation of these receptors is typically initiated by neurotransmitter binding to the orthosteric binding site, located at the extracellular domain (ECD), which leads to the opening of the channel pore (gate) at the transmembrane domain (TMD). Whereas considerable knowledge on molecular mechanisms of Cys-loop receptor activation was gathered for the acetylcholine receptor, little is known with this respect about the GABAA receptor (GABAAR), which mediates cellular inhibition. Importantly, several static structures of GABAAR were recently described, paving the way to more in-depth molecular functional studies. Moreover, it has been pointed out that the TMD-ECD interface region plays a crucial role in transduction of conformational changes from the ligand binding site to the channel gate. One of the interface structures implicated in this transduction process is the M2-M3 loop with a highly conserved proline (P277) residue. To address this issue specifically for α1ß2γ2L GABAAR, we choose to substitute proline α1P277 with amino acids with different physicochemical features such as electrostatic charge or their ability to change the loop flexibility. To address the functional impact of these mutations, we performed macroscopic and single-channel patch-clamp analyses together with modeling. Our findings revealed that mutation of α1P277 weakly affected agonist binding but was critical for all transitions of GABAAR gating: opening/closing, preactivation, and desensitization. In conclusion, we provide evidence that conservative α1P277 at the interface is strongly involved in regulating the receptor gating.


Subject(s)
Ion Channel Gating , Proline , Animals , Ion Channel Gating/physiology , Binding Sites , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism , Mammals/metabolism
17.
J Neurosci ; 30(14): 4957-69, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20371816

ABSTRACT

beta-Catenin, together with LEF1/TCF transcription factors, activates genes involved in the proliferation and differentiation of neuronal precursor cells. In mature neurons, beta-catenin participates in dendritogenesis and synaptic function as a component of the cadherin cell adhesion complex. However, the transcriptional activity of beta-catenin in these cells remains elusive. In the present study, we found that in the adult mouse brain, beta-catenin and LEF1 accumulate in the nuclei of neurons specifically in the thalamus. The particular electrophysiological properties of thalamic neurons depend on T-type calcium channels. Cav3.1 is the predominant T-type channel subunit in the thalamus, and we hypothesized that the Cacna1g gene encoding Cav3.1 is a target of the LEF1/beta-catenin complex. We demonstrated that the expression of Cacna1g is high in the thalamus and is further increased in thalamic neurons treated in vitro with LiCl or WNT3A, activators of beta-catenin. Luciferase reporter assays confirmed that the Cacna1G promoter is activated by LEF1 and beta-catenin, and footprinting analysis revealed four LEF1 binding sites in the proximal region of this promoter. Chromatin immunoprecipitation demonstrated that the Cacna1g proximal promoter is occupied by beta-catenin in vivo in the thalamus, but not in the hippocampus. Moreover, WNT3A stimulation enhanced T-type current in cultured thalamic neurons. Together, our data indicate that the LEF1/beta-catenin complex regulates transcription of Cacna1g and uncover a novel function for beta-catenin in mature neurons. We propose that beta-catenin contributes to neuronal excitability not only by a local action at the synapse but also by activating gene expression in thalamic neurons.


Subject(s)
Calcium Channels, T-Type/genetics , Lymphoid Enhancer-Binding Factor 1/physiology , Neurons/physiology , Thalamus/physiology , Transcriptional Activation/physiology , beta Catenin/physiology , Age Factors , Animals , Calcium Channels, T-Type/biosynthesis , Calcium Channels, T-Type/chemistry , Cells, Cultured , Female , HeLa Cells , Humans , Lymphoid Enhancer-Binding Factor 1/chemistry , Male , Mice , Rats , Synapses/chemistry , Synapses/genetics , Synapses/metabolism , beta Catenin/chemistry
19.
Cells ; 10(8)2021 08 11.
Article in English | MEDLINE | ID: mdl-34440823

ABSTRACT

Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.


Subject(s)
Matrix Metalloproteinases/metabolism , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Animals , Humans , Learning/physiology , Long-Term Potentiation/physiology , Proteolysis , Synapses/metabolism , gamma-Aminobutyric Acid/metabolism
20.
Neuroscience ; 467: 39-46, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34033868

ABSTRACT

It is known that besides synaptic inhibition, there is a persistent component of inhibitory drive mediated by tonic currents which is believed to mediate majority of the total inhibitory charge in hippocampal neurons. Tonic currents, depending on cell types, can be mediated by a variety of GABAA receptor (GABAAR) subtypes but in pyramidal neurons, α5-subunit containing receptors were found to be predominant. Importantly, α5-GABAARs were implicated in both inhibitory and excitatory synaptic plasticity as well as in a variety of cognitive tasks. In the present study, we asked whether the protocol that evokes NMDAR-dependent GABAergic inhibitory long-term potentiation (iLTP) also induces the plasticity of tonic inhibition in hippocampal pyramidal neurons. Our whole-cell patch-clamp recordings revealed that the induction of this type of iLTP is associated with a marked increase in tonic current. By using the specific inverse agonist of α5-containing GABAARs (L-655,709) we provide evidence that this plastic change in tonic current is correlated with an increased proportion of this type of GABAARs. On the contrary, the iLTP induction did not affect the tonic current potentiated by THIP, indicating that the pool of δ subunit-containing GABAARs receptors remains unaffected. We conclude that the α5-GABAARs-dependent plasticity of tonic inhibition is a novel dimension of the neuroplasticity of the inhibitory drive in the hippocampal principal neurons. Overall, α5-containing GABAARs emerge as key players in a variety of plasticity mechanisms operating over a large span of time and spatial scales.


Subject(s)
Hippocampus , Receptors, GABA-A , Hippocampus/metabolism , Neuronal Plasticity , Pyramidal Cells/metabolism , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid
SELECTION OF CITATIONS
SEARCH DETAIL