ABSTRACT
BACKGROUND: Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF). To assess whether whole-brain changes in CBF are present and follow a pattern of progression, we investigated both resting-state brain perfusion and vascular reactivity longitudinally in the zQ175DN mouse model of HD. METHODS: Using pseudo-continuous arterial spin labelling (pCASL) MRI in the zQ175DN model of HD and age-matched wild-type (WT) mice, we assessed whole-brain, resting-state perfusion at 3, 6 and 9 and 13 months of age, and assessed hypercapnia-induced cerebrovascular reactivity (CVR), at 4.5, 6, 9 and 15 months of age. RESULTS: We found increased perfusion in cortical regions of zQ175DN HET mice at 3 months of age, and a reduction of this anomaly at 6 and 9 months, ages at which behavioural deficits have been reported. On the other hand, under hypercapnia, CBF was reduced in zQ175DN HET mice as compared to the WT: for multiple brain regions at 6 months of age, for only somatosensory and retrosplenial cortices at 9 months of age, and brain-wide by 15 months. CVR impairments in cortical regions, the thalamus and globus pallidus were observed in zQ175DN HET mice at 9 months, with whole brain reactivity diminished at 15 months of age. Interestingly, blood vessel density was increased in the motor cortex at 3 months, while average vessel length was reduced in the lateral portion of the caudate putamen at 6 months of age. CONCLUSION: Our findings reveal early cortical resting-state hyperperfusion and impaired CVR at ages that present motor anomalies in this HD model, suggesting that further characterization of brain perfusion alterations in animal models is warranted as a potential therapeutic target in HD.
Subject(s)
Huntington Disease , Humans , Mice , Animals , Infant , Huntington Disease/genetics , Cross-Sectional Studies , Hypercapnia , Brain , Disease Models, Animal , PerfusionABSTRACT
PURPOSE: As several therapies aimed at lowering mutant huntingtin (mHTT) brain levels in Huntington's disease (HD) are currently being investigated, noninvasive positron emission tomography (PET) imaging of mHTT could be utilized to directly evaluate therapeutic efficacy and monitor disease progression. Here we characterized and longitudinally assessed the novel radioligand [11C]CHDI-626 for mHTT PET imaging in the zQ175DN mouse model of HD. METHODS: After evaluating radiometabolites and radioligand kinetics, we conducted longitudinal dynamic PET imaging at 3, 6, 9, and 13 months of age (M) in wild-type (WT, n = 17) and heterozygous (HET, n = 23) zQ175DN mice. Statistical analysis was performed to evaluate temporal and genotypic differences. Cross-sectional cohorts at each longitudinal time point were included for post-mortem [3H]CHDI-626 autoradiography. RESULTS: Despite fast metabolism and kinetics, the radioligand was suitable for PET imaging of mHTT. Longitudinal quantification could discriminate between genotypes already at premanifest stage (3 M), showing an age-associated increase in signal in HET mice in parallel with mHTT aggregate load progression, as supported by the post-mortem [3H]CHDI-626 autoradiography. CONCLUSION: With clinical evaluation underway, [11C]CHDI-626 PET imaging appears to be a suitable preclinical candidate marker to monitor natural HD progression and for the evaluation of mHTT-lowering therapies.
Subject(s)
Huntington Disease , Animals , Carbon Radioisotopes , Cross-Sectional Studies , Disease Models, Animal , Humans , Huntington Disease/metabolism , Mice , Positron-Emission Tomography/methodsABSTRACT
BACKGROUND: Changes in phosphodiesterase 10A enzyme levels may be a suitable biomarker of disease progression in Huntington's disease. OBJECTIVES: To evaluate phosphodiesterase 10A PET imaging as a biomarker of HD progression using the radioligand, [18 F]MNI-659. METHODS: The cross-sectional study (NCT02061722) included 45 Huntington's disease gene-expansion carriers stratified into four disease stages (early and late premanifest and Huntington's disease stages 1 and 2) and 45 age- and sex-matched healthy controls. The primary analysis compared striatal and pallidal phosphodiesterase 10A availability between Huntington's disease gene-expansion carriers and healthy controls as assessed by [18 F]MNI-659 binding. We assessed changes in phosphodiesterase 10A expression using several PET methodologies and compared with previously proposed measures of Huntington's disease progression (PET imaging of D2/3 receptors and anatomical volume loss on MRI). The longitudinal follow-up study (NCT02956148) continued evaluation of phosphodiesterase 10A availability in 35 Huntington's disease gene-expansion carriers at a mean of 18 months from baseline of the cross-sectional study. RESULTS: Primary analyses revealed that phosphodiesterase 10A availability in caudate, putamen, and globus pallidus was significantly lower in Huntington's disease gene-expansion carriers versus healthy controls across all stages. Striatal and pallidal phosphodiesterase 10A availability progressively declined in the premanifest stages and appeared to plateau between stages 1 and 2. The percentage decline of phosphodiesterase 10A availability measured cross-sectionally between Huntington's disease gene-expansion carriers and healthy controls was greater than that demonstrated by D2/3 receptor availability or volumetric changes. Annualized rates of phosphodiesterase 10A change showed a statistically significant decline between the cross-sectional study and follow-up. CONCLUSIONS: [18 F]MNI-659 PET imaging is a biologically plausible biomarker of Huntington's disease progression that is more sensitive than the dopamine-receptor and volumetric methods currently used. © 2020 International Parkinson and Movement Disorder Society.
Subject(s)
Huntington Disease , Biomarkers , Cross-Sectional Studies , Disease Progression , Follow-Up Studies , Humans , Huntington Disease/diagnostic imaging , Huntington Disease/genetics , Molecular Imaging , Phosphoric Diester Hydrolases/genetics , Positron-Emission TomographyABSTRACT
BACKGROUND: Over the past years, positron emission tomography (PET) imaging studies have investigated striatal molecular changes in premanifest and manifest Huntington's disease (HD) gene expansion carriers (HDGECs), but they have yielded inconsistent results. OBJECTIVE: To systematically examine the evidence of striatal molecular alterations in manifest and premanifest HDGECs as measured by PET imaging studies. METHODS: MEDLINE, ISI Web of Science, Cochrane Library and Scopus databases were searched for articles published until 7 June 2017 that included PET studies in manifest and premanifest HDGECs. Meta-analyses were conducted with random effect models, and heterogeneity was addressed with I2 index, controlling for publication bias and quality of study. The primary outcome was the standardised mean difference (SMD) of PET uptakes in the whole striatum, caudate and putamen in manifest and premanifest HDGECs compared with healthy controls (HCs). RESULTS: Twenty-four out of 63 PET studies in premanifest (n=158) and manifest (n=191) HDGECs and HCs (n=333) were included in the meta-analysis. Premanifest and manifest HDGECs showed significant decreases in dopamine D2 receptors in caudate (SMD=-1.233, 95% CI -1.753 to -0.713, p<0.0001; SMD=-5.792, 95% CI -7.695 to -3.890, p<0.0001) and putamen (SMD=-1.479, 95% CI -1.965 to -0.992, p<0.0001; SMD=-5.053, 95% CI -6.558 to -3.549, p<0.0001), in glucose metabolism in caudate (SMD=-0.758, 95% CI -1.139 to -0.376, p<0.0001; SMD=-3.738, 95% CI -4.880 to -2.597, p<0.0001) and putamen (SMD=-2.462, 95% CI -4.208 to -0.717, p=0.006; SMD=-1.650, 95% CI -2.842 to -0.458, p<0.001) and in striatal PDE10A binding (SMD=-1.663, 95% CI -2.603 to -0.723, p=0.001; SMD=-2.445, 95% CI -3.371 to -1.519, p<0.001). CONCLUSIONS: PET imaging has the potential to detect striatal molecular changes even at the early premanifest stage of HD, which are relevant to the neuropathological mechanisms underlying the development of the disease.
Subject(s)
Corpus Striatum/diagnostic imaging , Huntington Disease/diagnostic imaging , Corpus Striatum/metabolism , Glucose/metabolism , Heterozygote , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/metabolism , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography , Receptors, Dopamine D2/metabolismABSTRACT
Phosphodiesterase 10A enzyme (PDE10A) is an important striatal target that has been shown to be affected in patients with neurodegenerative disorders, particularly Huntington´s disease (HD). PDE10A is expressed on striatal neurones in basal ganglia where other known molecular targets are enriched such as dopamine D2/3 receptors (D2/3 R). The aim of this study was to examine the availability of PDE10A enzyme in relation with age and gender and to compare those changes with those related to D2/3 R and volumes in different regions of the basal ganglia. As a secondary objective we examined the relative distribution of D2/3 R and PDE10A enzyme in the striatum and globus pallidus. Forty control subjects (20F/20M; age: 44±11y, age range 27-69) from an ongoing positron emission tomography (PET) study in HD gene expansion carriers were included. Subjects were examined with PET using the high-resolution research tomograph (HRRT) and with 3T magnetic resonance imaging (MRI). The PDE10A radioligand 18F-MNI-659 and D2/3 R radioligand 11C-raclopride were used. The outcome measure was the binding potential (BPND) estimated with the two-tissue compartment model (18F-MNI-659) and the simplified reference tissue model (11C-raclopride) using the cerebellum as reference region. The PET data were corrected for partial volume effects. In the striatum, PDE10A availability showed a significant age-related decline that was larger compared to the age-related decline of D2/3 R availability and to the age-related decline of volumes measured with MRI. In the globus pallidus, a less pronounced decline of PDE10A availability was observed, whereas D2/3 R availability and volumes seemed to be rather stable with aging. The distribution of the PDE10A enzyme was different from the distribution of D2/3 R, with higher availability in the globus pallidus. These results indicate that aging is associated with a considerable physiological reduction of the availability of PDE10A enzyme in the striatum. Moreover as result of the analysis, in the striatum for both the molecular targets, we observed a gender effect with higher BPND the female group.
Subject(s)
Aging , Basal Ganglia/enzymology , Phosphoric Diester Hydrolases/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Adult , Aged , Female , Humans , Image Enhancement , Magnetic Resonance Imaging , Male , Middle Aged , Phthalimides , Positron-Emission Tomography/methods , Quinazolinones , RacloprideABSTRACT
Synaptic dysfunction is a primary mechanism underlying Huntington disease (HD) progression. This study investigated changes in synaptic vesicle glycoprotein 2A (SV2A) density by means of 11C-UCB-J small-animal PET imaging in the central nervous system of mice with HD. Methods: Dynamic 11C-UCB-J small-animal PET imaging was performed at clinically relevant disease stages (at 3, 7, 10, and 16 mo) in the heterozygous knock-in Q175DN mouse model of HD and wild-type littermates (16-18 mice per genotype and time point). Cerebral 11C-UCB-J analyses were performed to assess genotypic differences during presymptomatic (3 mo) and symptomatic (7-16 mo) disease stages. 11C-UCB-J binding in the spinal cord was quantified at 16 mo. 3H-UCB-J autoradiography and SV2A immunofluorescence were performed postmortem in mouse and human brain tissues. Results:11C-UCB-J binding was lower in symptomatic heterozygous mice than in wild-type littermates in parallel with disease progression (7 and 10 mo: P < 0.01; 16 mo: P < 0.0001). Specific 11C-UCB-J binding was detectable in the spinal cord, with symptomatic heterozygous mice displaying a significant reduction (P < 0.0001). 3H-UCB-J autoradiography and SV2A immunofluorescence corroborated the in vivo measurements demonstrating lower SV2A in heterozygous mice (P < 0.05). Finally, preliminary analysis of SV2A in the human brain postmortem suggested lower SV2A in HD gene carriers than in controls without dementia. Conclusion:11C-UCB-J PET detected SV2A deficits during symptomatic disease in heterozygous mice in both the brain and the spinal cord and therefore may be suitable as a novel marker of synaptic integrity widely distributed in the central nervous system. On clinical application, 11C-UCB-J PET imaging may have promise for SV2A measurement in patients with HD during disease progression and after disease-modifying therapeutic strategies.
Subject(s)
Huntington Disease , Animals , Brain/diagnostic imaging , Brain/metabolism , Disease Progression , Humans , Huntington Disease/diagnostic imaging , Huntington Disease/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Positron-Emission Tomography/methods , Pyridines/metabolism , Synaptic Vesicles/metabolismABSTRACT
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene that encodes the pathologic mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) tract. Whereas several therapeutic programs targeting mHTT expression have advanced to clinical evaluation, methods to visualize mHTT protein species in the living brain are lacking. Here, we demonstrate the development and characterization of a positron emission tomography (PET) imaging radioligand with high affinity and selectivity for mHTT aggregates. This small molecule radiolabeled with 11C ([11C]CHDI-180R) allowed noninvasive monitoring of mHTT pathology in the brain and could track region- and time-dependent suppression of mHTT in response to therapeutic interventions targeting mHTT expression in a rodent model. We further showed that in these animals, therapeutic agents that lowered mHTT in the striatum had a functional restorative effect that could be measured by preservation of striatal imaging markers, enabling a translational path to assess the functional effect of mHTT lowering.
Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/diagnostic imaging , Huntington Disease/genetics , Huntington Disease/metabolism , Ligands , Neurodegenerative Diseases/pathologyABSTRACT
The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.
Subject(s)
Brain/diagnostic imaging , Heterocyclic Compounds, 3-Ring/chemistry , Huntingtin Protein/metabolism , Protein Aggregates/physiology , Pyridines/chemistry , Radiopharmaceuticals/chemistry , Alzheimer Disease , Animals , Biomarkers/metabolism , Brain/metabolism , Carbon Radioisotopes/chemistry , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Molecular Structure , Positron-Emission Tomography , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity RelationshipABSTRACT
Positron emission tomography (PET) antagonist ligands such as [(11)C]-raclopride are commonly used to study dopamine D2 receptor (D2) binding of antipsychotics. It has been suggested that agonist radioligands bind preferentially to the high-affinity state of D2 receptor and may provide a more relevant means of assessing D2 occupancy. The main objective of this study was to determine if D2 receptor occupancy (RO) could be differentiated with agonist and antagonist radioligands in vivo. Agonist radioligands [(3)H]-MNPA and [(3)H]-(+)-PHNO were synthesized and compared to antagonist [(3)H]-raclopride in the in vitro binding and in vivo occupancy studies. In vivo, unanesthetized rats were pretreated with quinpirole (full agonist), aripiprazole (partial agonist), or haloperidol (antagonist) prior to administration of the agonist or antagonist radioligand. All three pretreatment compounds showed equivalent dose-dependent D2 receptor occupancy in the rat striatum with each radioligand. The in vivo receptor occupancy results suggested that the binding of quinpirole, aripiprazole, and haloperidol to the high or low affinity state of the D2 receptor could not be differentiated using radiolabeled agonists or antagonists, presumably due to a predominance of high affinity states of the D2 receptor in vivo. This hypothesis was supported in part by the in vitro binding results. Our in vitro results show that [(3)H]-MNPA binds to D2S transfected CHO cell membranes at a single high affinity site. Displacement of [(3)H]-(+)-PHNO binding by quinpirole and elimination of most [(3)H]-(+)-PHNO binding by the guanine nucleotide GppNHp in striatal membranes suggest that the majority of D2 in striatal tissue is G-protein coupled. Together, these findings suggest that D2 agonist radioligands produce in vivo receptor occupancy comparable to [(3)H]-raclopride.
Subject(s)
Apomorphine/analogs & derivatives , Brain/drug effects , Brain/metabolism , Oxazines/metabolism , Raclopride/metabolism , Receptors, Dopamine D2/metabolism , Animals , Apomorphine/metabolism , Binding Sites/drug effects , Binding Sites/physiology , Binding, Competitive/drug effects , Binding, Competitive/physiology , CHO Cells , Cricetinae , Cricetulus , Dopamine Agonists/metabolism , Dopamine Antagonists/metabolism , Dopamine D2 Receptor Antagonists , Male , Rats , Rats, Long-Evans , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolismABSTRACT
PURPOSE: This study aimed at investigating binding specificity, suitability of reference region-based kinetic modelling, and pharmacokinetics of the metabotropic glutamate receptor 1 (mGluR1) radioligand [11C]ITDM in mice. PROCEDURES: We performed in vivo blocking as well as displacement of [11C]ITDM during positron emission tomography (PET) imaging using the specific mGluR1 antagonist YM-202074. Additionally, we assessed in vitro blocking of [3H]ITDM at two different doses of YM-202074. As an alternative to reference region models, we validated the use of a noninvasive image-derived input function (IDIF) compared to an arterial input function measured with an invasive arteriovenous (AV) shunt using a population-based curve for radiometabolite correction and characterized the pharmacokinetic modelling of [11C]ITDM in the mouse brain. Finally, we also assessed semi-quantitative approaches. RESULTS: In vivo blocking with YM-202074 resulted in a decreased [11C]ITDM binding, ranging from - 35.8 ± 8.0 % in pons to - 65.8 ± 3.0 % in thalamus. Displacement was also markedly observed in all tested regions. In addition, in vitro [3H]ITDM binding could be blocked in a dose-dependent manner. The volume of distribution (VT) based on the noninvasive IDIF (VT (IDIF)) showed excellent agreement with the VT values based on the metabolite-corrected plasma input function regardless of the metabolite correction (r2 > 0.943, p < 0.0001). Two-tissue compartmental model (2TCM) was found to be the preferred model and showed optimal agreement with Logan plot (r2 > 0.960, p < 0.0001). A minimum scan duration of 80 min was required for proper parameter estimation. SUV was not reliable (r2 = 0.379, p = 0.0011), unlike the SUV ratio to the SUV of the input function, which showed to be a valid approach. CONCLUSIONS: No suitable reference region could be identified for [11C]ITDM as strongly supported by in vivo and in vitro evidence of specific binding in all brain regions. However, by applying appropriate kinetic models, [11C]ITDM PET imaging represents a promising tool to visualize mGluR1 in the mouse brain.
Subject(s)
Carbon Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Receptors, Metabotropic Glutamate/metabolism , Animals , Autoradiography , Brain/pathology , Carbon Radioisotopes/pharmacokinetics , Kinetics , Ligands , Male , Mice, Inbred C57BL , Reference Standards , Time FactorsABSTRACT
Synaptic pathology is associated with several brain disorders, thus positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) using the radioligand [11C]UCB-J may provide a tool to measure synaptic alterations. Given the pivotal role of mouse models in understanding neuropsychiatric and neurodegenerative disorders, this study aims to validate and characterize [11C]UCB-J in mice. We performed a blocking study to verify the specificity of the radiotracer to SV2A, examined kinetic models using an image-derived input function (IDIF) for quantification of the radiotracer, and investigated the in vivo metabolism. Regional TACs during baseline showed rapid uptake of [11C]UCB-J into the brain. Pretreatment with levetiracetam confirmed target engagement in a dose-dependent manner. VT (IDIF) values estimated with one- and two-tissue compartmental models (1TCM and 2TCM) were highly comparable (r=0.999, p < 0.0001), with 1TCM performing better than 2TCM for K1 (IDIF). A scan duration of 60 min was sufficient for reliable VT (IDIF) and K1 (IDIF) estimations. In vivo metabolism of [11C]UCB-J was relatively rapid, with a parent fraction of 22.5 ± 4.2% at 15 min p.i. In conclusion, our findings show that [11C]UCB-J selectively binds to SV2A with optimal kinetics in the mouse representing a promising tool to noninvasively quantify synaptic density in comparative or therapeutic studies in neuropsychiatric and neurodegenerative disorder models.
Subject(s)
Brain/metabolism , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography/methods , Pyridines/pharmacokinetics , Pyrrolidinones/pharmacokinetics , Synaptic Vesicles/metabolism , Animals , Kinetics , Male , Membrane Glycoproteins/analysis , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Models, Theoretical , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/metabolism , Radiopharmaceuticals/pharmacokineticsABSTRACT
Impairment of group I metabotropic glutamate receptors (mGluRs) results in altered glutamate signalling, which is associated with several neurological disorders including Huntington's Disease (HD), an autosomal neurodegenerative disease. In this study, we assessed in vivo pathological changes in mGluR1 availability in the Q175DN mouse model of HD using longitudinal positron emission tomography (PET) imaging with the radioligand [11C]ITDM. Ninety-minute dynamic PET imaging scans were performed in 22 heterozygous (HET) Q175DN mice and 22 wild-type (WT) littermates longitudinally at 6, 12, and 16 months of age. Analyses of regional volume of distribution with an image-derived input function (VT (IDIF)) and voxel-wise parametric VT (IDIF) maps were performed to assess differences between genotypes. Post-mortem evaluation at 16 months was done to support in vivo findings. [11C]ITDM VT (IDIF) quantification revealed higher mGluR1 availability in the brain of HET mice compared to WT littermates (e.g. cerebellum: + 15.0%, + 17.9%, and + 17.6% at 6, 12, and 16 months, respectively; p < 0.001). In addition, an age-related decline in [11C]ITDM binding independent of genotype was observed between 6 and 12 months. Voxel-wise analysis of parametric maps and post-mortem quantifications confirmed the elevated mGluR1 availability in HET mice compared to WT littermates. In conclusion, in vivo measurement of mGluR1 availability using longitudinal [11C]ITDM PET imaging demonstrated higher [11C]ITDM binding in extra-striatal brain regions during the course of disease in the Q175DN mouse model.
Subject(s)
Huntington Disease/diagnostic imaging , Huntington Disease/metabolism , Positron-Emission Tomography , Receptors, Metabotropic Glutamate/metabolism , Animals , Benzamides , Disease Models, Animal , Mice, Inbred C57BL , ThiazolesABSTRACT
Radiotracers suitable for positron emission tomography studies often serve as preclinical tools for in vivo receptor occupancy. The serotonin 1B receptor (5-HT(1B)) subtype is a pharmacological target used to discover treatments for various psychiatric and neurological disorders. In psychiatry, 5-HT(1B) antagonists may provide novel therapeutics for depression and anxiety. We report on the in vitro and in vivo evaluation of tritiated 5-methyl-8-(4-methyl-piperazin-1-yl)-4-oxo-4H-chromene-2-carboxylicacid (4-morpholin-4-yl-phenyl)-amide ([N-methyl-(3)H(3)]AZ10419369), a potent 5-HT(1B) radiotracer. [N-methyl-(3)H(3)]-AZ10419369 showed saturable single-site high-affinity in vitro binding (guinea pig, K(d) = 0.38 and human, K(d) = 0.37) to guinea pig or human 5-HT(1B) receptors in recombinant membranes and high-affinity (K(d) = 1.9 nM) saturable (B(max) = 0.099 pmol/mg protein) binding in membranes from guinea pig striatum. When [N-methyl-(3)H(3)]AZ10419369 was administered to guinea pigs by intravenous bolus, the measured radioactivity was up to 5-fold higher in brain areas containing the 5-HT(1B) receptor (striatum/globus pallidus, midbrain, hypothalamus, and frontal cortex) compared with the cerebellum, the nonspecific binding region. Specific uptake peaked 30 min after injection with slow dissociation from target regions, as suggested by the in vitro binding kinetic profile. Pretreatment with 6-fluoro-8-(4-methyl-piperazin-1-yl)-4-oxo-4H-chromene-2-carboxylic acid [4-(4-propionyl-piperazin-1-yl)-phenyl]-amide (AZD1134) and 2-aminotetralin (AR-A000002), 5-HT(1B)-selective ligands, inhibited [N-methyl-(3)H(3)]AZ10419369-specific binding in a dose-dependent manner. In the guinea pig striatum, AZD1134 (ED(50) = 0.017 mg/kg) occupies a greater percentage of the 5-HT(1B) receptors at a lower administered dose than AR-A000002 (ED(50) = 2.5 mg/kg). In vivo receptor occupancy is an essential component to build binding-efficacy-exposure relationships and compare novel compound pharmacology. [N-methyl-(3)H(3)]AZ10419369 is a useful preclinical tool for investigating 5-HT(1B) receptor occupancy for novel compounds targeting this receptor.
Subject(s)
Benzopyrans/metabolism , Morpholines/metabolism , Piperazines/metabolism , Radiopharmaceuticals/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Serotonin 5-HT1 Receptor Antagonists , Serotonin Antagonists/metabolism , Tritium/metabolism , Animals , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , CHO Cells , Cell Line , Cricetinae , Cricetulus , Guinea Pigs , Haplorhini , Humans , Male , Morpholines/chemical synthesis , Morpholines/pharmacology , Piperazines/chemical synthesis , Piperazines/pharmacology , Protein Binding/drug effects , Protein Binding/physiology , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/pharmacologyABSTRACT
Highly specific and sensitive biomarkers for pathologies related to dysfunctions in the basal ganglia circuit are of great value to assess therapeutic efficacy not only clinically to establish an early diagnosis, but also in terms of monitoring the efficacy of therapeutic interventions and decelerated neurodegeneration. The phosphodiesterase 10A (PDE10A) enzyme plays a central role in striatal signaling and is implicated in several neuropsychiatric disorders involving striatal pathology, such as Huntingtons disease (HD) and schizophrenia. Inhibition of PDE10A activates the neurons in the striatum and consequently leads to alteration of behavioral aspects modulated by the striatal circuit. [18F]MNI-659, (2-(2-(3-(4-(2-[18F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione), is a newly developed PET radioligand that shows a high binding to PDE10A in the human brain in vivo. In the present study, we examined the in vitro binding of [18F]MNI-659 in human postmortem brain to gain a better understanding of the presence, density, disease-related alterations and therapy related to changes in PDE10A expression. The results show high specific binding of [18F]MNI-659 in the caudate nucleus, putamen and the hippocampal formation. Low specific [18F]MNI-659 binding was detected in nucleus accumbens in comparison to the caudate nucleus and putamen. In vitro binding studies with [18F]MNI-659 will facilitate in elucidating better understanding of the role of PDE10A activity in health and disease that may lead to new diagnostic opportunities in HD.
Subject(s)
Brain/enzymology , Phosphoric Diester Hydrolases/metabolism , Phthalimides , Positron-Emission Tomography/methods , Quinazolinones , Adult , Aged , Basal Ganglia/enzymology , Basal Ganglia/metabolism , Brain/diagnostic imaging , Cadaver , Corpus Striatum/enzymology , Corpus Striatum/metabolism , Female , Fluorine Radioisotopes , Humans , Male , Middle Aged , Neostriatum/enzymology , Neostriatum/metabolism , RadiopharmaceuticalsABSTRACT
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin gene (HTT), which codes for the pathologic mutant HTT (mHTT) protein. Since normal HTT is thought to be important for brain function, we engineered zinc finger protein transcription factors (ZFP-TFs) to target the pathogenic CAG repeat and selectively lower mHTT as a therapeutic strategy. Using patient-derived fibroblasts and neurons, we demonstrate that ZFP-TFs selectively repress >99% of HD-causing alleles over a wide dose range while preserving expression of >86% of normal alleles. Other CAG-containing genes are minimally affected, and virally delivered ZFP-TFs are active and well tolerated in HD neurons beyond 100 days in culture and for at least nine months in the mouse brain. Using three HD mouse models, we demonstrate improvements in a range of molecular, histopathological, electrophysiological and functional endpoints. Our findings support the continued development of an allele-selective ZFP-TF for the treatment of HD.
Subject(s)
Alleles , Huntingtin Protein/genetics , Huntington Disease/therapy , Mutation , Transcription, Genetic , Zinc Fingers , Animals , Cells, Cultured , Disease Models, Animal , Female , Humans , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Neuroprotection , Trinucleotide RepeatsABSTRACT
The positron emission tomography (PET) tracer [18F]MNI-659, selective for phosphodiesterase 10A (PDE10A), is a promising tool to assess an early biomarker for Huntington's disease (HD). In this study we investigated [18F]MNI-659 uptake in the Q175 mouse model of HD. Given the focal striatal distribution of PDE10A as well as the striatal atrophy occurring in HD, the spatial normalization approach applied during the processing could sensibly affect the accuracy of the regional quantification. We compared the use of a magnetic resonance images (MRI) template based on individual MRI over a PET and CT templates for regional quantification and spatial normalization of [18F]MNI-659 PET images. We performed [18F]MNI-659 PET imaging in six months old heterozygous (HET) Q175 mice and wild-type (WT) littermates, followed by X-ray computed tomography (CT) scan. In the same week, individual T2-weighted MRI were acquired. Spatial normalization and regional quantification of the PET/CT images was performed on MRI, [18F]MNI-659 PET, or CT template and compared to binding potential (BPND) using volumes manually delineated on the individual MR images. Striatal volume was significantly reduced in HET mice (-7.7%, p<0.0001) compared to WT littermates. [18F]MNI-659 BPND in striatum of HET animals was significantly reduced (p<0.0001) when compared to WT littermates using all three templates. However, BPND values were significantly higher for HET mice using the PET template compared to the MRI and CT ones (p<0.0001), with an overestimation at lower activities. On the other hand, the CT template spatial normalization introduced larger variability reducing the effect size. The PET and CT template-based approaches resulted in a lower accuracy in BPND quantification with consequent decrease in the detectability of disease effect. This study demonstrates that for [18F]MNI-659 brain PET imaging in mice the use of an MRI-based spatial normalization is recommended to achieve accurate quantification and fully exploit the detectability of disease effect.
Subject(s)
Huntington Disease/pathology , Animals , Brain/pathology , Disease Models, Animal , Fluorine Radioisotopes/administration & dosage , Humans , Huntington Disease/genetics , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Inbred C57BL , Phosphoric Diester Hydrolases/geneticsABSTRACT
Impairment of the metabotropic glutamate receptor 5 (mGluR5) has been implicated with various neurologic disorders. Although mGluR5 density can be quantified with the PET radiotracer [11C]ABP688, the methods for reproducible quantification of [11C]ABP688 PET imaging in mice have not been thoroughly investigated yet. Thus, this study aimed to assess and validate cerebellum as reference region for simplified reference tissue model (SRTM), investigate the feasibility of a noninvasive cardiac image-derived input function (IDIF) for relative quantification, to validate the use of a PET template instead of an MRI template for spatial normalization, and to determine the reproducibility and within-subject variability of [11C]ABP688 PET imaging in mice. Blocking with the mGluR5 antagonist MPEP resulted in a reduction of [11C]ABP688 binding of 41% in striatum (p < 0.0001), while no significant effect could be found in cerebellum (-4.8%, p > 0.99) indicating cerebellum as suitable reference region for mice. DVR-1 calculated using a noninvasive IDIF and an arteriovenous input function correlated significantly when considering the cerebellum as the reference region (striatum: DVR-1, r = 0.978, p < 0.0001). Additionally, strong correlations between binding potential calculated from SRTM (BPND) with DVR-1 based on IDIF (striatum: r = 0.980, p < 0.0001) and AV shunt (striatum: r = 0.987, p < 0.0001). BPND displayed higher discrimination power than VT values in determining differences between wild-types and heterozygous Q175 mice, an animal model of Huntington's disease. Furthermore, we showed high agreement between PET- and MRI-based spatial normalization approaches (striatum: r = 0.989, p < 0.0001). Finally, both spatial normalization approaches did not reveal any significant bias between test-retest scans, with a relative difference below 5%. This study indicates that noninvasive quantification of [11C]ABP688 PET imaging is reproducible and cerebellum can be used as reference region in mice.
ABSTRACT
Metabotropic glutamate receptor 5 (mGluR5) represents a potential therapeutic target for Huntington disease. Using 11C-ABP688 (3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime), a noncompetitive and highly selective antagonist for mGluR5, we aimed to longitudinally characterize in vivo changes in mGluR5 by means of PET imaging in the Q175 mouse model of Huntington disease. Methods:11C-ABP688 PET imaging, followed by a CT scan, was performed on 18 heterozygous mice and 18 wild-type (WT) littermates at 3 different time points (6, 9, and 13 mo old). 11C-ABP688 nondisplaceable binding potential (BPND) was calculated for each time point in striatum and cortex using the cerebellum as the reference region. In addition, voxel-based statistical parametric mapping (SPM) analysis was performed on BPND images. Postmortem validation of mGluR5 level and neuronal density was performed on the mice at 6 mo old. Results: The 11C-ABP688 BPND of heterozygous animals was significantly reduced at all time points in the striatum (-13.1%, -13.5%, and -14.2% at 6, 9, and 13 mo, respectively; P < 0.001 for all) and in the cortex (-9.8%, -10.2%, and -10.6%, respectively; P < 0.01 for all), when compared with WT animals. Longitudinal changes in 11C-ABP688 BPND were also found in heterozygous mice, showing a reduction at 13 mo compared with 6 mo (-10.4%, P < 0.05). SPM analysis confirmed reduced BPND in heterozygous compared with WT mice, as well as a time-related decline in 11C-ABP688 binding in the striatum of heterozygous mice. Postmortem analysis confirmed a mGluR5 decrease in both striatum (-36.6%; P < 0.01) and cortex (-16.6%; P < 0.05) in heterozygous mice, whereas no difference in neuronal density was found. Conclusion: In vivo imaging of mGluR5 using 11C-ABP688 PET/CT revealed a marked reduction in ligand binding in the striatum and cortex of heterozygous mice, compared with WT mice, as well as a temporal decline. This study suggests that 11C-ABP688 PET imaging is a potential biomarker to monitor the progression of, and therapeutic strategies for, Huntington disease.
Subject(s)
Huntington Disease/diagnostic imaging , Huntington Disease/metabolism , Oximes/pharmacokinetics , Pyridines/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes/pharmacokinetics , Disease Models, Animal , Disease Progression , Heterozygote , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Longitudinal Studies , Male , Mice , Mice, Neurologic Mutants , Mice, Transgenic , Mutant Proteins/genetics , Positron Emission Tomography Computed Tomography/methods , Receptor, Metabotropic Glutamate 5/antagonists & inhibitorsABSTRACT
BACKGROUND: Reference tissue-based quantification of brain PET data does not typically include correction for signal originating from blood vessels, which is known to result in biased outcome measures. The bias extent depends on the amount of radioactivity in the blood vessels. In this study, we seek to revisit the well-established Logan plot and derive alternative formulations that provide estimation of distribution volume ratios (DVRs) that are corrected for the signal originating from the vasculature. RESULTS: New expressions for the Logan plot based on arterial input function and reference tissue were derived, which included explicit terms for whole blood radioactivity. The new methods were evaluated using PET data acquired using [11C]raclopride and [18F]MNI-659. The two-tissue compartment model (2TCM), with which signal originating from blood can be explicitly modeled, was used as a gold standard. DVR values obtained for [11C]raclopride using the either blood-based or reference tissue-based Logan plot were systematically underestimated compared to 2TCM, and for [18F]MNI-659, a proportionality bias was observed, i.e., the bias varied across regions. The biases disappeared when optimal blood-signal correction was used for respective tracer, although for the case of [18F]MNI-659 a small but systematic overestimation of DVR was still observed. CONCLUSIONS: The new method appears to remove the bias introduced due to absence of correction for blood volume in regular graphical analysis and can be considered in clinical studies. Further studies are however required to derive a generic mapping between plasma and whole-blood radioactivity levels.
ABSTRACT
Since the discovery of the HTT gene in 1993, numerous animal models have been developed to study the progression of Huntington disease (HD) and to evaluate potential new therapeutics. In the present study, we used small-animal PET to characterize the expression of molecular targets in the recently reported HD animal model, the zQ175 mouse model. Methods: Male heterozygous zQ175 (Htttm1Mfc/190JChdi, CHDI-81003003) and wild-type (WT, C57BL/6J) animals were imaged with the dopamine D2 receptor radioligand 11C-raclopride, the PDE10A radioligand 18F-MNI-659, the dopamine D1 receptor radioligand 11C-NNC 112, and the 5-HT2A radioligand 11C-MDL 100907 at 6 and 9 mo of age. The outcome measure was the binding potential (BPND), using the cerebellum as the reference region. Selected regions of interest were the striatum for all radioligands and additionally the striatum, rostral cortex, caudal cortex, and hippocampus for 11C-NNC 112 and 11C-MDL 100907. Results: At 6 mo of age, the BPND in the striatum was lower in zQ175 than WT animals by 40% for 11C-raclopride, by 52% for 18F-MNI-659, by 28% for 11C-NNC, and by 11% for 11C-MDL 100907. In the rostral cortex, D1 receptor binding was 22% lower in zQ175 than WT animals. We found an overall reduction in D1 and 5-HT2A binding in the hippocampus of zQ175 compared with WT animals. The BPND of 11C-MDL 100907 in the caudal cortex was also lower in zQ175 WT animals. At 9 mo, there was a slight further reduction of D1, D2, and 5-HT2ABPND in the striatum, whereas PDE10A reached a plateau. Cortical markers were also slightly further decreased at 9 mo in zQ175 animals. Conclusion: Our study indicates a marked reduction of ligand binding to D1 and D2 and 5-HT2A receptors as well as loss of PDE10A enzyme in the striatum of zQ175 mice as compared with WT animals, in agreement with data obtained in clinical PET studies of patients with HD. The zQ175 mouse model recapitulates the expression pattern seen in humans with HD and may have value in further elucidating pathophysiologic events and therapeutic strategies.