Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Curr Opin Nephrol Hypertens ; 33(2): 154-160, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38164939

ABSTRACT

PURPOSE OF REVIEW: The mounting body of evidence underscores the pivotal role of interferon gamma (IFNγ) in the pathogenesis of hypertension, prompting exploration of the mechanisms by which this cytokine fosters a pro-inflammatory immune milieu, subsequently exacerbating hypertension. In this review, we delve into recent preclinical and clinical studies from the past two years to elucidate how IFNγ participates in the progression of hypertension. RECENT FINDINGS: IFNγ promotes renal CD8 + T cell accumulation by upregulating tubular PDL1 and MHC-I, intensifying cell-to-cell interaction. Intriguingly, a nucleotide polymorphism in LNK, predisposing towards hypertension, correlates with augmented T cell IFNγ production. Additionally, anti-IFNγ treatment exhibits protective effects against T cell-mediated inflammation during angiotensin II infusion or transverse aortic constriction. Moreover, knockout of the mineralocorticoid receptor in T cells protects against cardiac dysfunction induced by myocardial infarction, correlating with reduced IFNγ and IL-6, decreased macrophage recruitment, and attenuated fibrosis. Interestingly, increased IFNγ production correlates with elevated blood pressure, impacting individuals with type 2 diabetes, nondiabetics, and obese hypertensive patients. SUMMARY: These revelations spotlight IFNγ as the critical mediator bridging the initial phase of blood pressure elevation with the sustained and exacerbated pathology. Consequently, blocking IFNγ signaling emerges as a promising therapeutic target to improve the management of this 'silent killer.'


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Humans , Interferon-gamma/physiology , T-Lymphocytes , Hypertension/etiology , Hypertension/metabolism , Inflammation
2.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35430873

ABSTRACT

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Animals , CD8-Positive T-Lymphocytes/metabolism , Desoxycorticosterone Acetate/metabolism , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Hypertension/metabolism , Kidney Tubules, Distal/metabolism , Kidney Tubules, Distal/pathology , Mice , Sodium/metabolism , Sodium Chloride Symporters/metabolism , Sodium Chloride, Dietary
3.
J Cell Mol Med ; 26(9): 2557-2565, 2022 05.
Article in English | MEDLINE | ID: mdl-35318805

ABSTRACT

Although small-cell lung cancer (SCLC) accounts for a small fraction of lung cancer cases (~15%), the prognosis of patients with SCLC is poor with an average overall survival period of a few months without treatment. Current treatments include standard chemotherapy, which has minimal efficacy and a newly developed immunotherapy that thus far, benefits a limited number of patients. In the current study, we screened a natural product library and identified 5 natural compounds, in particular tubercidin and lycorine HCl, that display prominent anti-SCLC activities in vitro and in vivo. Subsequent RNA-sequencing and functional validation assays revealed the anti-SCLC mechanisms of these new compounds, and further identified new cellular factors such as BCAT1 as a potential therapeutic target with clinical implication in SCLC patients. Taken together, our study provides promising new directions for fighting this aggressive lung cancer.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Amaryllidaceae Alkaloids , Humans , Immunotherapy , Phenanthridines , Small Cell Lung Carcinoma/drug therapy , Transaminases/therapeutic use , Tubercidin/therapeutic use
4.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328467

ABSTRACT

Cannabinoids exert anti-cancer actions; however, the underlying cytotoxic mechanisms and the cannabinoid receptors (CBRs) involved remain unclear. In this study, CBRs were characterized in several cancer cell lines. Radioligand binding screens surprisingly revealed specific binding only for the non-selective cannabinoid [3H]WIN-55,212-2, and not [3H]CP-55,940, indicating that the expressed CBRs exhibit atypical binding properties. Furthermore, [3H]WIN-55,212-2 bound to a single site in all cancer cells with high affinity and varying densities. CBR characteristics were next compared between human prostate cancer cell lines expressing low (PC-3) and high (DU-145) CBR density. Although mRNA for canonical CBRs was detected in both cell lines, only 5 out of 15 compounds with known high affinity for canonical CBRs displaced [3H]WIN-55,212-2 binding. Functional assays further established that CBRs in prostate cancer cells exhibit distinct signaling properties relative to canonical Gi/Go-coupled CBRs. Prostate cancer cells chronically exposed to both CBR agonists and antagonists/inverse agonists produced receptor downregulation, inconsistent with actions at canonical CBRs. Treatment of DU-145 cells with CBR ligands increased LDH-release, decreased ATP-dependent cell viability, and produced mitochondrial membrane potential depolarization. In summary, several cancer cell lines express CBRs with binding and signaling profiles dissimilar to canonical CBRs. Drugs selectively targeting these atypical CBRs might exhibit improved anti-cancer properties.


Subject(s)
Cannabinoids , Prostatic Neoplasms , Cannabinoids/pharmacology , Cell Death , Humans , Male , Prostate/metabolism , Receptors, Cannabinoid/metabolism , Signal Transduction
5.
J Pharmacol Exp Ther ; 376(1): 40-50, 2021 01.
Article in English | MEDLINE | ID: mdl-33100270

ABSTRACT

Pharmacological openers of ATP-sensitive potassium (KATP) channels are effective antihypertensive agents, but off-target effects, including severe peripheral edema, limit their clinical usefulness. It is presumed that the arterial dilation induced by KATP channel openers (KCOs) increases capillary pressure to promote filtration edema. However, KATP channels also are expressed by lymphatic muscle cells (LMCs), raising the possibility that KCOs also attenuate lymph flow to increase interstitial fluid. The present study explored the effect of KCOs on lymphatic contractile function and lymph flow. In isolated rat mesenteric lymph vessels (LVs), the prototypic KATP channel opener cromakalim (0.01-3 µmol/l) progressively inhibited rhythmic contractions and calculated intraluminal flow. Minoxidil sulfate and diazoxide (0.01-100 µmol/l) had similar effects at clinically relevant plasma concentrations. High-speed in vivo imaging of the rat mesenteric lymphatic circulation revealed that superfusion of LVs with cromakalim and minoxidil sulfate (0.01-10 µmol/l) maximally decreased lymph flow in vivo by 38.4% and 27.4%, respectively. Real-time polymerase chain reaction and flow cytometry identified the abundant KATP channel subunits in LMCs as the pore-forming Kir6.1/6.2 and regulatory sulfonylurea receptor 2 subunits. Patch-clamp studies detected cromakalim-elicited unitary K+ currents in cell-attached patches of LMCs with a single-channel conductance of 46.4 pS, which is a property consistent with Kir6.1/6.2 tetrameric channels. Addition of minoxidil sulfate and diazoxide elicited unitary currents of similar amplitude. Collectively, our findings indicate that KCOs attenuate lymph flow at clinically relevant plasma concentrations as a potential contributing mechanism to peripheral edema. SIGNIFICANCE STATEMENT: ATP-sensitive potassium (KATP) channel openers (KCOs) are potent antihypertensive medications, but off-target effects, including severe peripheral edema, limit their clinical use. Here, we demonstrate that KCOs impair the rhythmic contractions of lymph vessels and attenuate lymph flow, which may promote edema formation. Our finding that the KATP channels in lymphatic muscle cells may be unique from their counterparts in arterial muscle implies that designing arterial-selective KCOs may avoid activation of lymphatic KATP channels and peripheral edema.


Subject(s)
Edema/etiology , KATP Channels/metabolism , Lymphatic Vessels/physiology , Muscle Contraction , Action Potentials , Animals , Cells, Cultured , Cromakalim/pharmacology , Diazoxide/pharmacology , KATP Channels/agonists , KATP Channels/genetics , Lymphatic Vessels/drug effects , Lymphatic Vessels/metabolism , Male , Minoxidil/analogs & derivatives , Minoxidil/pharmacology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , Potassium/metabolism , Rats , Rats, Sprague-Dawley
7.
Lipids Health Dis ; 14: 6, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25888871

ABSTRACT

BACKGROUND: It is widely known that salt is an accelerating factor for the progression of metabolic syndrome and causes cardiovascular diseases, most likely due to its pro-oxidant properties. We hypothesized that excessive salt intake also facilitates the development of nonalcoholic steatohepatitis (NASH), which is frequently associated with metabolic syndrome. METHODS: We examined the exacerbating effect of high-salt diet on high-fat diet-induced liver injury in a susceptible model to oxidative stress, apoE knockout and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transgenic mice. RESULTS: High-salt diet led to NASH in high-fat diet-fed LOX-1 transgenic/apoE knockout mice without affecting high-fat diet-induced dyslipidemia or hepatic triglyceride accumulation. Additionally, a high-salt and high-fat diet stimulated oxidative stress production and inflammatory reaction to a greater extent than did a high-fat diet in the liver of LOX-1 transgenic/apoE knockout mice. CONCLUSIONS: We demonstrated that high-salt diet exacerbated NASH in high-fat diet-fed LOX-1 transgenic /apoE knockout mice and that this effect was associated with the stimulation of oxidative and inflammatory processes; this is the first study to suggest the important role of excessive salt intake in the development of NASH.


Subject(s)
Diet, High-Fat/adverse effects , Dyslipidemias/complications , Fatty Liver/etiology , Oxidative Stress/drug effects , Sodium, Dietary/adverse effects , Animals , Blotting, Western , Dyslipidemias/pathology , Fatty Liver/pathology , Fibrosis/etiology , Inflammation/etiology , Liver/chemistry , Liver/pathology , Male , Mice , Mice, Knockout , NADP/metabolism , Oxidative Stress/physiology , Reverse Transcriptase Polymerase Chain Reaction , Scavenger Receptors, Class E/biosynthesis , Scavenger Receptors, Class E/genetics , Superoxides/analysis
8.
Kidney Int ; 85(5): 1103-11, 2014 May.
Article in English | MEDLINE | ID: mdl-24088960

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a phosphate-regulating hormone that acts primarily on the kidney and parathyroid. With declining kidney function there is an increase in circulating FGF23 levels, which is associated with vascular calcification and mortality in chronic kidney disease. Whether FGF23 exerts direct effects on vasculature is unclear. We evaluated the expression of Klotho and FGF receptors in rat aortic rings and rat aorta vascular smooth muscle cells maintained in culture by reverse transcription-PCR, western blotting, and immunostaining. Signaling pathways underlying FGF23 effects were assessed by western blotting, and effects of FGF23 on osteogenic markers and phosphate transporters were assessed by real-time reverse transcription-PCR. We detected Klotho and FGFR1 in total aorta but not in vascular smooth muscle cells. FGF23 augmented phosphate-induced vascular calcification in the aortic rings from uremic rats and dose dependently increased ERK1/2 phosphorylation in Klotho-overexpressing but not naive vascular smooth muscle cells. FGF23-induced ERK1/2 phosphorylation was inhibited by SU5402 (FGFR1 inhibitor) and U0126 (MEK inhibitor). FGF23 enhanced phosphate-induced calcification in Klotho-overexpressing vascular smooth muscle cells and increased osteoblastic marker expression, which was inhibited by U0126. In contrast, phosphate transporter expression was not affected by phosphate or FGF23. Thus, FGF23 enhances phosphate-induced vascular calcification by promoting osteoblastic differentiation involving the ERK1/2 pathway.


Subject(s)
Aortic Diseases/chemically induced , Fibroblast Growth Factors/toxicity , Glucuronidase/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Phosphates/toxicity , Vascular Calcification/chemically induced , Animals , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblast Growth Factors/metabolism , Glucuronidase/deficiency , Glucuronidase/genetics , Klotho Proteins , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Rats, Sprague-Dawley , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Recombinant Proteins/toxicity , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism , Signal Transduction/drug effects , Transfection , Vascular Calcification/metabolism , Vascular Calcification/pathology
9.
Sci Rep ; 14(1): 9976, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693148

ABSTRACT

Inflammation and fibrosis often occur in the kidney after acute injury, resulting in chronic kidney disease and consequent renal failure. Recent studies have indicated that lymphangiogenesis can drive renal inflammation and fibrosis in injured kidneys. However, whether and how this pathogenesis affects the contralateral kidney remain largely unknown. In our study, we uncovered a mechanism by which the contralateral kidney responded to injury. We found that the activation of mineralocorticoid receptors and the increase in vascular endothelial growth factor C in the contralateral kidney after unilateral ureteral obstruction could promote lymphangiogenesis. Furthermore, mineralocorticoid receptor activation in lymphatic endothelial cells resulted in the secretion of myofibroblast markers, thereby contributing to renal fibrosis. We observed that this process could be attenuated by administering the mineralocorticoid receptor blocker eplerenone, which, prevented the development of fibrotic injury in the contralateral kidneys of rats with unilateral ureteral obstruction. These findings offer valuable insights into the intricate mechanisms underlying kidney injury and may have implications for the development of therapeutic strategies to mitigate renal fibrosis in the context of kidney disease.


Subject(s)
Eplerenone , Fibrosis , Kidney , Lymphangiogenesis , Mineralocorticoid Receptor Antagonists , Ureteral Obstruction , Animals , Eplerenone/pharmacology , Lymphangiogenesis/drug effects , Rats , Fibrosis/drug therapy , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/complications , Mineralocorticoid Receptor Antagonists/pharmacology , Male , Receptors, Mineralocorticoid/metabolism , Spironolactone/analogs & derivatives , Spironolactone/pharmacology , Vascular Endothelial Growth Factor C/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Rats, Sprague-Dawley , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Myofibroblasts/pathology
10.
Hypertension ; 81(3): 530-540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38193292

ABSTRACT

BACKGROUND: CD8+ T cells (CD8Ts) have been implicated in hypertension. However, the specific mechanisms are not fully understood. In this study, we explore the contribution of the P2X7 (purinergic receptor P2X7) receptor to CD8T activation and subsequent promotion of sodium retention in the kidney. METHODS: We used mouse models of hypertension. Wild type were used as genetic controls, OT1 and Rag2/OT1 mice were utilized to determine antigen dependency, and P2X7-knockout mice were studied to define the role of P2X7 in activating CD8Ts and promoting hypertension. Blood pressure was monitored continuously and kidneys were obtained at different experimental end points. Freshly isolated CD8Ts from mice for activation assays and ATP stimulation. CD8T activation-induced promotion of sodium retention was explored in cocultures of CD8Ts and mouse DCTs. RESULTS: We found that OT1 and Rag2/OT1 mice, which are nonresponsive to common antigens, still developed hypertension and CD8T-activation in response to deoxycorticosterone acetate/salt treatment, similar to wild-type mice. Further studies identified the P2X7 receptor on CD8Ts as a possible mediator of this antigen-independent activation of CD8Ts in hypertension. Knockout of the P2X7 receptor prevented calcium influx and cytokine production in CD8Ts. This finding was associated with reduced CD8T-DCT stimulation, reversal of excessive salt retention in DCTs, and attenuated development of salt-sensitive hypertension. CONCLUSIONS: Our findings suggest a novel mechanism by which CD8Ts are activated in hypertension to exacerbate salt retention and infer that the P2X7 receptor on CD8Ts may represent a new therapeutic target to attenuate T-cell-mediated immunopathology in hypertension.


Subject(s)
CD8-Positive T-Lymphocytes , Hypertension , Animals , Mice , Adenosine Triphosphate , Mice, Inbred C57BL , Mice, Knockout , Receptors, Purinergic P2X7/metabolism , Sodium , Sodium Chloride, Dietary
11.
Mucosal Immunol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844208

ABSTRACT

Mycobacterium tuberculosis (Mtb)-infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that interferon-γ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.

12.
Am J Physiol Heart Circ Physiol ; 305(2): H155-62, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23686713

ABSTRACT

Chronic hypoxia is one of the main causes of pulmonary hypertension (PH) associated with ROS production. Lectin-like oxidized low-density lipoprotein receptor (LOX)-1 is known to be an endothelial receptor of oxidized low-density lipoprotein, which is assumed to play a role in the initiation of ROS generation. We investigated the role of LOX-1 and ROS generation in PH and vascular remodeling in LOX-1 transgenic (TG) mice. We maintained 8- to 10-wk-old male LOX-1 TG mice and wild-type (WT) mice in normoxia (room air) or hypoxia (10% O2 chambers) for 3 wk. Right ventricular (RV) systolic pressure (RVSP) was comparable between the two groups under normoxic conditions; however, chronic hypoxia significantly increased RVSP and RV hypertrophy in LOX-1 TG mice compared with WT mice. Medial wall thickness of the pulmonary arteries was significantly greater in LOX-1 TG mice than in WT mice. Furthermore, hypoxia enhanced ROS production and nitrotyrosine expression in LOX-1 TG mice, supporting the observed pathological changes. Administration of the NADPH oxidase inhibitor apocynin caused a significant reduction in PH and vascular remodeling in LOX-1 TG mice. Our results suggest that LOX-1-ROS generation induces the development and progression of PH.


Subject(s)
Hypertension, Pulmonary/etiology , Hypoxia/complications , Lipoproteins, LDL/metabolism , Oxidative Stress , Pulmonary Artery/metabolism , Scavenger Receptors, Class E/metabolism , Animals , Antioxidants/pharmacology , Chronic Disease , Disease Models, Animal , Disease Progression , Enzyme Inhibitors/pharmacology , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/prevention & control , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Reactive Oxygen Species/metabolism , Scavenger Receptors, Class E/genetics , Signal Transduction , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Up-Regulation , Ventricular Function, Right , Ventricular Pressure
13.
Viruses ; 15(4)2023 04 20.
Article in English | MEDLINE | ID: mdl-37112991

ABSTRACT

Although Kaposi's sarcoma-associated herpesvirus (KSHV) has been reported to cause several human cancers including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), the mechanisms of KSHV-induced tumorigenesis, especially virus-host interaction network, are still not completely understood, which therefore hinders the development of effective therapies. Histamine, together with its receptors, plays an important role in various allergic diseases by regulating different inflammation and immune responses. Our previous data showed that antagonists targeting histamine receptors effectively repressed KSHV lytic replication. In the current study, we determined that histamine treatment increased cell proliferation and anchorage-independent growth abilities of KSHV-infected cells. Furthermore, histamine treatment affected the expression of some inflammatory factors from KSHV-infected cells. For clinical relevance, several histamine receptors were highly expressed in AIDS-KS tissues when compared to normal skin tissues. We determined that histamine treatment promoted KSHV-infected lymphoma progression in immunocompromised mice models. Therefore, besides viral replication, our data indicate that the histamine and related signaling are also involved in other functions of KSHV pathogenesis and oncogenesis.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Animals , Mice , Herpesvirus 8, Human/physiology , Histamine , Receptors, Histamine/therapeutic use , Carcinogenesis , Cell Transformation, Neoplastic
14.
Front Cardiovasc Med ; 10: 1129384, 2023.
Article in English | MEDLINE | ID: mdl-36970367

ABSTRACT

Hypertension is the primary cause of cardiovascular disease, which is a leading killer worldwide. Despite the prevalence of this non-communicable disease, still between 90% and 95% of cases are of unknown or multivariate cause ("essential hypertension"). Current therapeutic options focus primarily on lowering blood pressure through decreasing peripheral resistance or reducing fluid volume, but fewer than half of hypertensive patients can reach blood pressure control. Hence, identifying unknown mechanisms causing essential hypertension and designing new treatment accordingly are critically needed for improving public health. In recent years, the immune system has been increasingly implicated in contributing to a plethora of cardiovascular diseases. Many studies have demonstrated the critical role of the immune system in the pathogenesis of hypertension, particularly through pro-inflammatory mechanisms within the kidney and heart, which, eventually, drive a myriad of renal and cardiovascular diseases. However, the precise mechanisms and potential therapeutic targets remain largely unknown. Therefore, identifying which immune players are contributing to local inflammation and characterizing pro-inflammatory molecules and mechanisms involved will provide promising new therapeutic targets that could lower blood pressure and prevent progression from hypertension into renal or cardiac dysfunction.

15.
Geroscience ; 45(4): 2135-2143, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36856945

ABSTRACT

Age-associated diseases are becoming progressively more prevalent, reflecting the increased lifespan of the world's population. However, the fundamental mechanisms of physiologic aging are poorly understood, and in particular, the molecular pathways that mediate cardiac aging and its associated dysfunction are unclear. Here, we focus on certain ion flux abnormalities of the mitochondria that may contribute to cardiac aging and age-related heart failure. Using oxidative phosphorylation, mitochondria pump protons from the matrix to the intermembrane space to generate a proton gradient across the inner membrane. The protons are returned to the matrix by the ATPase complex within the membrane to generate ATP. However, a portion of protons leak back to the matrix and do not drive ATP production, and this event is called proton leak or uncoupling. Accumulating evidence suggests that mitochondrial proton leak is increased in the cardiac myocytes of aged hearts. In this mini-review, we discuss the measurement methods and major sites of mitochondrial proton leak with an emphasis on the adenine nucleotide transporter 1 (ANT1), and explore the possibility of inhibiting augmented mitochondrial proton leak as a therapeutic intervention to mitigate cardiac aging.


Subject(s)
Ion Channels , Protons , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism
16.
J Hematol Oncol ; 16(1): 48, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143124

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), which preferentially arise in immunocompromised patients while lack of effective therapeutic options. Oncoproteins Myc and hypoxia-inducible factor-1α (HIF1α) have been found closely related to KSHV infection, replication and oncogenesis. However, the strategies of dual targeting these two oncoproteins have never been developed and tested for treatments of KSHV-related malignancies. In the current study, we report that treatment of echinomycin dramatically regresses cell growth both in vitro-cultured KSHV + tumor cells and in vivo KS or PEL xenograft mice models, through simultaneously inhibiting Myc and HIF1α expression. Echinomycin treatment also induces viral lytic gene expression whereas not increasing infectious virions production from KSHV + tumor cells. Our comparative transcriptomic analysis has identified a bunch of new Echinomycin-regulated, Myc- and HIF1α-related genes contributed to KSHV pathogenesis, including KDM4B and Tau, which are required for the survival of KSHV + tumor cells with functional validation. These data together reveal that dual targeting Myc and HIF1α such as using Echinomycin may represent a new and promising option for treatments of these virus-associated malignancies.


Subject(s)
Echinomycin , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Animals , Mice , Herpesvirus 8, Human/genetics , Echinomycin/pharmacology , Echinomycin/therapeutic use , Virus Latency/genetics , Sarcoma, Kaposi/drug therapy , Sarcoma, Kaposi/metabolism , Cell Cycle , Jumonji Domain-Containing Histone Demethylases
17.
Am J Physiol Endocrinol Metab ; 302(4): E425-32, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22114025

ABSTRACT

Mineralocorticoid receptors (MRs) in the central nervous system play important roles in spatial memory, fear memory, salt sensitivity, and hypertension. Corticosterone binds to MRs to induce presynaptic vesicle release and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor aggregation, which are necessary for induction of long-term potentiation under psychological stress. On the other hand, cognitive dysfunction is an important problem clinically in patients with hypertension, diabetes, and cerebral infarction, and all of these conditions are associated with an increase in reactive oxygen species (ROS) generation. Oxidative stress has been shown to modify the genomic actions of MRs in the peripheral organs; however, there have been no reports until now about the relation between the nongenomic actions of MRs and ROS in the central nervous system. In this study, we investigated the relationship between ROS and the nongenomic actions of MR. We examined the nongenomic actions of MR by measuring the slope of the field excitatory postsynaptic potentials and found that ROS induced an additive increase of these potentials, which was accompanied by Rac1 GTP activation and ERK1/2 phosphorylation. An NADPH oxidase inhibitor, apocynin, blocked the nongenomic actions of MRs. A Rac1 inhibitor, NSC23766, was also found to block synaptic enhancement and ERK1/2 phosphorylation induced by NADPH and corticosterone. We concluded that NADPH oxidase activity and Rac1 GTP activity are indispensable for the nongenomic actions of MRs and that Rac1 GTP activation induces ERK1/2 phosphorylation in the brain.


Subject(s)
CA1 Region, Hippocampal/metabolism , NADPH Oxidases/metabolism , Receptors, Mineralocorticoid/metabolism , rac1 GTP-Binding Protein/metabolism , Acetophenones/pharmacology , Aminoquinolines/pharmacology , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/physiology , Corticosterone/pharmacology , Enzyme Inhibitors/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/physiology , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Receptors, Mineralocorticoid/physiology , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/physiology
18.
Curr Hypertens Rep ; 14(5): 468-72, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22752520

ABSTRACT

Salt-sensitive hypertension is closely related with natriuretic capacity of the kidney. Besides several genome-wide research reported candidate gene or gene polymorphism responsible for salt-sensitive hypertension, recently, several new factors for acquired salt-sensitive hypertension are reported. Among them, we have identified that rac1, a small GTPase, activates mineralocorticoid receptor in aldosterone-independent fashion and induces salt-sensitive hypertension in several rodent model. On the other hand, sympathoactivation in the brain and/or kidney regulate sodium handlings in the kidney. Recently it is reported that oxidative stress in the brain or in the kidney may modulate sympathetic tone. Moreover, we reported that ß2 adrenoceptor alters histone acetylation and further regulates sodium resorption at distal tubules via activating glucocorticoid receptor. These regulations are to be confirmed in humans and the future, and may open a new door for diagnosis and treatment of salt-sensitive hypertension or moreover preventing development of salt-sensitive hypertension.


Subject(s)
Hypertension/metabolism , Kidney/metabolism , Sodium Chloride, Dietary/metabolism , Animals , Humans , Hypertension/enzymology , Hypertension/physiopathology , Kidney/enzymology , Kidney/physiopathology , Oxidative Stress/physiology , Signal Transduction , Sympathetic Nervous System/physiology
19.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35453301

ABSTRACT

Accumulating evidence indicate that blueberries have anti-hypertensive properties, which may be mainly due to its rich polyphenol content and their high antioxidant capacity. Thus, we aimed to investigate the mechanisms by which blueberry polyphenols exert these effects. Human aortic endothelial cells (HAECs) were incubated with 200 µg/mL blueberry polyphenol extract (BPE) for 1 h prior to a 12 h treatment with angiotensin (Ang) II, a potent vasoconstrictor. Our results indicate that Ang II increased levels of superoxide anions and decreased NO levels in HAECs. These effects were attenuated by pre-treatment with BPE. Ang II increased the expression of the pro-oxidant enzyme NOX1, which was not attenuated by BPE. Pre-treatment with BPE attenuated the Ang II-induced increase in the phosphorylation of the redox-sensitive MAPK kinases, SAPK/JNK and p38. BPE increased the expression of the redox-transcription factor NRF2 as well as detoxifying and antioxidant enzymes it transcribes including HO-1, NQO1, and SOD1. We also show that BPE attenuates the Ang II-induced phosphorylation of the NF-κB p65 subunit. Further, we show that inhibition of NRF2 leads to a decrease in the expression of HO-1 and increased phosphorylation of the NF-κB p65 subunit in HAECs treated with BPE and Ang II. These findings indicate that BPE acts through a NRF2-dependent mechanism to reduce oxidative stress and increase NO levels in Ang II-treated HAECs.

20.
Kidney360 ; 3(12): 2164-2173, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36591357

ABSTRACT

Hypertension is the leading cause of cardiovascular disease and the primary risk factor for mortality worldwide. For more than half a century, researchers have demonstrated that immunity plays an important role in the development of hypertension; however, the precise mechanisms are still under investigation. The current body of knowledge indicates that proinflammatory cytokines may play an important role in contributing to immune-related pathogenesis of hypertension. Interferon gamma (IFN-γ), in particular, as an important cytokine that modulates immune responses, has been recently identified as a critical regulator of blood pressure by several groups, including us. In this review, we focus on exploring the role of IFN-γ in contributing to the pathogenesis of hypertension, outlining the various immune producers of this cytokine and described signaling mechanisms involved. We demonstrate a key role for IFN-γ in hypertension through global knockout studies and related downstream signaling pathways that IFN-γ production from CD8+ T cell (CD8T) in the kidney promoting CD8T-stimulated salt retention via renal tubule cells, thereby exacerbating hypertension. We discuss potential activators of these T cells described by the current literature and relay a novel hypothesis for activation.


Subject(s)
CD8-Positive T-Lymphocytes , Hypertension , Interferon-gamma , Humans , Blood Pressure/genetics , Blood Pressure/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines , Hypertension/genetics , Hypertension/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology
SELECTION OF CITATIONS
SEARCH DETAIL