Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Nano Lett ; 24(3): 1015-1023, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38215497

ABSTRACT

Ru-related catalysts have shown excellent performance for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR); however, a deep understanding of Ru-active sites on a nanoscale heterogeneous support for hydrogen catalysis is still lacking. Herein, a click chemistry strategy is proposed to design Ru cluster-decorated nanometer RuxFe3-xO4 heterointerfaces (Ru/RuxFe3-xO4) as highly effective bifunctional hydrogen catalysts. It is found that introducing Ru into nanometric Fe3O4 species breaks the symmetry configuration and optimizes the active site in Ru/RuxFe3-xO4 for HER and HOR. As expected, the catalyst displays prominent alkaline HER and HOR performance with mass activity much higher than that of commercial Pt/C as well as robust stability during catalysis because of the strong interaction between the Ru cluster and the RuxFe3-xO4 support, and the optimized adsorption intermediate (Had and OHad). This work sheds light on a promsing approach to improving the electrocatalysis performance of catalysts by the breaking of atomic dimension symmetry.

2.
Small ; : e2406105, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212643

ABSTRACT

Avoiding the stacking of active sites in catalyst structural design is a promising route for realizing active oxygen evolution reaction (OER). Herein, using a CoFe Prussian blue analoge cube with hollow structure (C-CoFe PBA) as a derived support, a highly effective Ni2P-FeP4-Co2P catalyst with a larger specific surface area is reported. Benefiting from the abundant active sites and fast charge transfer capability of the phosphide nanosheets, the Ni2P-FeP4-Co2P catalyst in 1 m KOH requires only overpotentials of 248 and 277 mV to reach current density of 10 and 50 mA cm-2 and outperforms the commercial catalyst RuO2 and most reported non-noble metal OER catalysts. In addition, the two-electrode system consisting of Ni2P-FeP4-Co2P and Pt/C is able to achieve a current density of 10 and 50 mA cm-2 at 1.529 and 1.65 V. This work provides more ideas and directions for synthesizing transition metal catalysts for efficient OER performance.

3.
Small ; : e2405399, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183523

ABSTRACT

The oxygen evolution reaction (OER) plays a pivotal role in diverse renewable energy storage and conversion technologies, including water electrolysis, electrochemical CO2 reduction, nitrogen fixation, and metal-air batteries. Among various water electrolysis techniques, proton exchange membrane (PEM)-based water electrolysis devices offer numerous advantages, including high current densities, exceptional chemical stability, excellent proton conductivity, and high-purity H2. Nevertheless, the prohibitive cost associated with Ir/Ru-based OER electrocatalysts poses a significant barrier to the broad-scale application of PEM-based water splitting. Consequently, it is crucial to advance the development of non-noble metal OER catalysis substance with high acid-activity and stability, thereby fostering their widespread integration into PEM water electrolyzers (PEMWEs). In this review, a comprehensive analysis of the acidic OER mechanism, encompassing the adsorbate evolution mechanism (AEM), lattice oxygen mechanism (LOM) and oxide path mechanism (OPM) is offered. Subsequently, a systematic summary of recently reported noble-metal-free catalysts including transition metal-based, carbon-based and other types of catalysts is provided. Additionally, a comprehensive compilation of in situ/operando characterization techniques is provided, serving as invaluable tools for furnishing experimental evidence to comprehend the catalytic mechanism. Finally, the present challenges and future research directions concerning precious-metal-free acidic OER are comprehensively summarized and discussed in this review.

4.
Macromol Rapid Commun ; : e2400740, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39401284

ABSTRACT

Additive manufacturing of transition metal sulfides (TMS) enables the creation of complex 3D structures, significantly expanding their applications. However, preparing 3D-structured TMS remains challenging due to difficulties in developing suitable inks. In this study, a supramolecular micelle hydrogel as the ink to fabricate 3D-structured TMS is utilized. Initially, the hydrogels are printed and infused with metal salt solutions to stabilize the structures, which are then calcined to convert into miniaturized 3D-TMS replicas. The micellar hydrogels crosslink via hydrophobic interactions, with sodium dodecyl sulfonate (SDS) micelles providing both a hydrophobic environment and sulfur sources. During calcination, the decomposed sulfur precursors coordinate with metal ions to form various TMS, including FeS2, Cu2S, Ni3S2, and Co9S8, along with several metal sulfides like PbS and SnS. Additionally, the method also allows for the preparation of transition metal dichalcogenides such as MoS2 and WS2. The formation mechanism is demonstrated using Ni3S2 as an example which exhibits notable catalytic activity in oxygen evolution reactions (OER) and hydrogen evolution reactions (HER). Given its simplicity and versatility, this dynamic micellar hydrogel-derived strategy offers a promising pathway for creating advanced TMS materials.

5.
Angew Chem Int Ed Engl ; 63(35): e202407577, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38771672

ABSTRACT

Interstitial filling of light atoms strongly affects the electronic structure and adsorption properties of the parent catalyst due to ligand and ensemble effects. Different from the conventional doping and surface modification, constructing ordered intermetallic structures is more promising to overcome the dissolution and reconstruction of active sites through strong interactions generated by atomic periodic arrangement, achieving joint improvement in catalytic activity and stability. However, for tightly arranged metal lattices, such as iridium (Ir), obtaining ordered filling atoms and further unveiling their interstitial effects are still limited by highly activated processes. Herein, we report a high-temperature molten salt assisted strategy to form the intermetallic Ir-B compounds (IrB1.1) with ordered filling by light boron (B) atoms. The B residing in the interstitial lattice of Ir constitutes favorable adsorption surfaces through a donor-acceptor architecture, which has an optimal free energy uphill in rate-determining step (RDS) of oxygen evolution reaction (OER), resulting in enhanced activity. Meanwhile, the strong coupling of Ir-B structural units suppresses the demetallation and reconstruction behavior of Ir, ensuring catalytic stability. Such B-induced interstitial effects endow IrB1.1 with higher OER performance than commercial IrO2, which is further validated in proton exchange membrane water electrolyzers (PEMWEs).

6.
Angew Chem Int Ed Engl ; : e202411125, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276024

ABSTRACT

Topological defects are inevitable existence in carbon-based frameworks, but their intrinsic electrocatalytic activity and mechanism remain under-explored. Herein, the hydrogen evolution reaction (HER) of pentagonal carbon-rings is probed by constructing pentagonal ring-rich carbon (PRC), with optimized electronic structures and higher HER activity relative to common hexagonal carbon (HC). Furthermore, to improve the reactivity, we couple Ru clusters with PRC (Ru@PRC) through p-d orbital hybridization between C and Ru atoms, which drives a shortcut transfer of electrons from Ru clusters to pentagonal rings. The electron-deficient Ru species leads to a notable negative shift in d-band centers of Ru and weakens their binding strength with hydrogen intermediates, thus enhancing the HER activity in different pH media. Especially, at a current density of 10 mA cm-2, PRC greatly reduces alkaline HER overpotentials from 540 to 380 mV. And Ru@PRC even exhibits low overpotentials of 28 and 275 mV to reach current densities of 10 and 1000 mA cm-2, respectively. Impressively, the mass activity and price activity of Ru@PRC are 7.83 and 15.7 times higher than that of Pt/C at the overpotential of 50 mV. Our data unveil the positive HER reactivity of pentagonal defects and good application prospects.

7.
Angew Chem Int Ed Engl ; 63(12): e202319618, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38286759

ABSTRACT

Efficient dual-single-atom catalysts are crucial for enhancing atomic efficiency and promoting the commercialization of fuel cells, but addressing the sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline media and the facile dual-single-atom site generation remains formidable challenges. Here, we break the local symmetry of ultra-small ruthenium (Ru) nanoparticles by embedding cobalt (Co) single atoms, which results in the release of Ru single atoms from Ru nanoparticles on reduced graphene oxide (Co1 Ru1,n /rGO). In situ operando spectroscopy and theoretical calculations reveal that the oxygen-affine Co atom disrupts the symmetry of ultra-small Ru nanoparticles, resulting in parasitic Ru and Co dual-single-atom within Ru nanoparticles. The interaction between Ru single atoms and nanoparticles forms effective active centers. The parasitism of Co atoms modulates the adsorption of OH intermediates on Ru active sites, accelerating HOR kinetics through faster formation of *H2 O. As anticipated, Co1 Ru1,n /rGO exhibits ultrahigh mass activity (7.68 A mgRu -1 ) at 50 mV and exchange current density (0.68 mA cm-2 ), which are 6 and 7 times higher than those of Ru/rGO, respectively. Notably, it also displays exceptional durability surpassing that of commercial Pt catalysts. This investigation provides valuable insights into hybrid multi-single-atom and metal nanoparticle catalysis.

8.
Small ; 19(36): e2300030, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37144430

ABSTRACT

Water electrolysis is an ideal method for industrial green hydrogen production. However, due to increasing scarcity of freshwater, it is inevitable to develop advanced catalysts for electrolyzing seawater especially at large current density. This work reports a unique Ru nanocrystal coupled amorphous-crystal Ni(Fe)P2 nanosheet bifunctional catalyst (Ru-Ni(Fe)P2 /NF), caused by partial substitution of Fe to Ni atoms in Ni(Fe)P2 , and explores its electrocatalytic mechanism by density functional theory (DFT) calculations. Owing to high electrical conductivity of crystalline phases, unsaturated coordination of amorphous phases, and couple of Ru species, Ru-Ni(Fe)P2 /NF only requires overpotentials of 375/295 and 520/361 mV to drive a large current density of 1 A cm-2 for oxygen/hydrogen evolution reaction (OER/HER) in alkaline water/seawater, respectively, significantly outperforming commercial Pt/C/NF and RuO2 /NF catalysts. In addition, it maintains stable performance at large current density of 1 A cm-2 and 600 mA cm-2 for 50 h in alkaline water and seawater, respectively. This work provides a new way for design of catalysts toward industrial-level seawater splitting.

9.
Langmuir ; 39(11): 4005-4014, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36881819

ABSTRACT

To commercialize hydrogen production by proton exchange membrane (PEM) electrolysis, the amount of rare and precious metal (iridium) required for anodic oxygen evolution reaction (OER) must be greatly reduced. In order to solve the problem, carrier loading is used to reduce the amount of iridium. Unlike the carrier modified by conventional metal element doping, this work doped the carrier with the nonmetallic element and then prepared IrO2/TiBxO2 composite catalyst using the Adams melting method. B-doped TiO2 supports with different doping amounts show the main phase rutile structure. Among them, the conductivity of B-doped carrier shows an increasing trend with the increase of doping amount, because boron can form holes and negative centers after doping, and more carriers improve the conductivity of the support. In addition, since element B is manifested from inside to outside on the support, B can affect the catalytic process. After the manifestation of element B, the carrier loaded with IrO2 exhibited superior electrocatalytic properties. The voltammetric charge per unit mass of 40IrO2/TiB0.3O2#2 (where #2 represents B after manifestation) reaches 1970 mC (cm2 mg)-1, the corresponding overpotential is 273 mV at a current density of 10 mA/cm-2, and the Tafel slope is 61.9 mV/dec Also, the charge transfer resistance is only 15 Ω. Finally, in the stability test, the composite catalyst is also better than pure IrO2 in the 20 000 s operation. Therefore, element B has an unexpectedly positive effect on the catalytic progress on the surface of the support after its manifestation.

10.
Inorg Chem ; 62(30): 12079-12088, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37471651

ABSTRACT

Due to the higher energy density, high thermal stability, and low cost, LiNi0.5Mn1.5O4 (LNMO) spinel, with a large voltage operating window, has been one of the most promising cathode materials for lithium-ion batteries (LIBs). However, the interfacial reaction between the cathode and electrolyte and the two-phase reaction within the bulk of LNMO would destroy the original structure and lead to capacity deterioration, posing a significant challenge. Therefore, the way to suppress the transition-metal (TM) dissolution in LNMO has attracted much attention. However, the ordered/disordered phase regulation by metal atom doping to prohibit TM dissolution has not been extensively explored. Herein, a Ge-doping strategy is proposed to adjust the ratio of disordered/ordered phases in LNMO, resulting in exceptional structural stability. For the modified spinel cathode, there is almost no voltage drop and the capacity retention is up to 92.2% over 1000 cycles at 1C. These results demonstrate that incorporating Ge into LNMO forms a robust structure that effectively increases the amount of Mn4+ while blocking the diffusion of TM ions. In addition, Ge-doping also protects the bulk from further reactions with electrolytes, significantly enhancing the interfacial stability and relieving voltage decay in cycling. This approach can also be applied to design other high-stability cathodes through ordered/disordered phase regulation.

11.
Small ; 18(17): e2107387, 2022 04.
Article in English | MEDLINE | ID: mdl-35324075

ABSTRACT

Platinum (Pt), as a commonly used electrocatalyst in direct methanol fuel cells (DMFCs), suffers from sluggish kinetics of both the methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). Geometric engineering has been proven effective for improving the MOR and ORR activities. Thus, by modulating the Pt precursor and poly(vinylpyrrolidone) (PVP) dosages, different porous PtCu nanotubes constructed by hollow nanospheres, solid alloy, and Pt-rich skinned nanoparticles, respectively, are successfully synthesized. Among them, the solid PtCu alloy nanoparticle coherent nanotubes exhibit the specific activity 9.42 times higher than Pt/C toward MOR, while the hollow PtCu alloy nanosphere coherent nanotubes show the specific activity 4.85 times higher than Pt/C toward ORR. The different Pt:Cu ratios of hollow nanospheres, solid alloy, and Pt-rich skinned nanoparticles cause the differences in electron transfer from Cu to Pt as well as electronic structures of Pt. As a result, the binding energies of intermediates can be regulated, leading to the enhancement in MOR and ORR.


Subject(s)
Methanol , Nanotubes , Alloys/chemistry , Catalysis , Methanol/chemistry , Nanotubes/chemistry , Oxidation-Reduction , Oxygen/chemistry , Platinum/chemistry , Porosity
12.
Small ; 18(52): e2205683, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36344459

ABSTRACT

Developing high-efficiency and cost-effective bifunctional catalysts for water electrolysis is fascinating but still remains challenging. Thus, diverse strategies have been utilized to boost the activity toward oxygen/hydrogen evolution reactions (OER/HER) for water splitting. Among them, composition and structure engineering as an effective strategy has received extensive attention. Here, by means of a self-sacrificing template strategy and simultaneous regulation of the composition and structure, Fe-incorporated Ni/MoO2 heterostructural (NiFe/Fe-MoO2 ) hollow nanorod arrays are designed and constructed. Benefiting from abundant catalytic active sites, high intrinsic activity, and fast reaction kinetics, NiFe/Fe-MoO2 exhibits superior OER (η20  = 213 and 219 mV) and Pt-like HER activity (η10  = 34 and 38 mV), respectively, in 1 m KOH and alkaline seawater media. This results in attractive prospects in alkaline water and seawater electrolysis with only voltages of 1.48 and 1.51 V, and 1.69 and 1.73 V to achieve current densities of 10 and 100 mA cm-2 , respectively, superior to the Pt/C and RuO2 pair as a benchmark. Undoubtedly, this work provides a beneficial approach to the design and construction of noble-metal-free bifunctional catalysts toward efficient hydrogen production from alkaline water and seawater electrolysis.

13.
Small ; 18(40): e2204155, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36050884

ABSTRACT

The coordination environment of Ru centers determines their catalytic performance, however, much less attention is focused on cluster-induced charge transfer in a Ru single-atom system. Herein, by density functional theory (DFT) calculations, a competitive coordination-pairing between Ru clusters (RuRu bond) and single-atoms (RuO bond) is revealed leading to the charge redistribution between Ru and O atoms in ZnFe2 O4 units which share more free electrons to participate in the hydrogen desorption process, optimizing the proton adsorption and hydrogen desorption. Thus, a clicking confinement strategy for building a competitive coordination-pairing between Ru clusters and single-atoms anchored on ZnFe2 Ox nanosheets over carbon via RuO ligand (Ru1, n -ZnFe2 Ox -C) is proposed. Benefiting from the optimized coordination effect and the electronic synergy between Ru clusters and single-atoms, such a catalyst demonstrates the excellent activity and excellent stability in alkaline and seawater media, which has exceptional hydrogen evolution reaction activity with overpotentials as low as 10.1 and 15.9 mV to reach the current density of 10 mA cm-2 in alkaline and seawater media, respectively, higher than that of commercial Pt/C catalysts as a benchmark. Furthermore, it owns remarkably outstanding mass activity, approximately 2 and 8 times higher than that of Pt catalysts in alkaline and seawater media, respectively.

14.
Small ; 18(15): e2108097, 2022 04.
Article in English | MEDLINE | ID: mdl-35233940

ABSTRACT

The density functional theory calculation results reveal that the adjacent defect concentration and electronic spin state can effectively activate the CoIII sites in the atomically thin nanosheets, facilitating the thermodynamic transformation of *O to *OOH, thus offering ultrahigh charge transfer properties and efficiently stabilizing the phase. This undoubtedly evidences that, for metal sulfides, the atom-scale cation/anion vacancy pair and surface electronic spin state can play a great role in enhancing the oxygen evolution reaction. Inspired by the theoretical prediction, interconnected selenium (Se) wired ultrathin Co3 S4 (Sex -Co3 S4 ) nanosheets with Co/S (Se) dual-vacancies (Se1.0 -Co3 S4 -VS/Se -VCo ) pairs are constructed by a simple approach. As an efficient sulfur host material, in an ultralow-concentration KOH solution (0.1 m), Se1.0 -Co3 S4 -VS/Se -VCo presents outstanding durability up to 165 h and a low overpotential of 289.5 mV at 10 mA cm-2 , which outperform the commercial Co3 S4 nanosheets (NSs) and RuO2 . Moreover, the turnover frequency of Se1.0 -Co3 S4 -VS/Se -VCo is 0.00965 s-1 at an overpotential of 0.39 V, which is 5.7 times that of Co3 S4 NSs, and 5.8 times that of commercial RuO2 . The finding offers a rational design strategy to create the multi-defect structure in catalysts toward high-efficiency water electrolysis.


Subject(s)
Selenium , Water , Cations , Oxidation-Reduction , Oxygen
15.
Small ; 18(6): e2105305, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34854554

ABSTRACT

Developing high-efficiency electrocatalysts toward overall water splitting is an increasingly important area for sustainable energy evolution. Theoretical calculation results demonstrate that the incorporation of Ru optimizes the Gibbs free energy of adsorption of H2 O molecules and intermediates for the hydrogen/oxygen evolution reactions (HER/OER) on metal selenide sites, thus boosting electrocatalytic overall water splitting. Accordingly, ruthenium modified nickel diselenide nanosheet arrays are designed and construct on nickel foam (Ru-NiSe2 /NF). The obtained Ru-NiSe2 /NF electrode with a stable 3D structure shows greatly improved OER and HER activity in alkaline solution. Particularly, toward OER, it only requires 210 mV to obtain a current density of 10 mA cm-2 , and the formation of the intermediate nickel oxyhydroxide as active center during the OER process is captured by in situ Raman. Moreover, the overall water splitting can be driven by a voltage of merely 1.537 V to obtain 10 mA cm-2 . This work provides an available strategy for selenides to enhance electrochemical properties and inspires more studies to explore highly efficient electrocatalysts toward full water splitting.

16.
Small ; 18(24): e2200713, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35560983

ABSTRACT

Owing to the interacted anion and cation redox dynamics in Li2 MnO3 , the high energy density can be obtained for lithium-rich manganese-based layered transition metal (TM) oxide [Li1.2 Ni0.2 Mn0.6 O2 , LNMO]. However, irreversible migration of Mn ions and oxygen release during highly de-lithiation can destroy its layered structure, leading to voltage and capacity decline. Herein, non-TM antimony (Sb) is pinned to the TM layer of LNMO by a facile sol-gel method. High-resolution ex and in situ characterization technologies manifest that the introduction of trace Sb inhibits the migration of Mn ions, forming a more stable structure. Sb can impressively adjust the Mn-O interaction between anions and cations, beneficial to decrease the energy level of Mn 3d and O 2p orbitals and expand their band gap according to the  theoretical calculation results. As a result, the discharge specific capacity and the energy density for SbLi1.2 [Ni0.2 Mn0.6 ]O2 (SLNMO) reaches as high as 301 mAh g-1 and 1019.6 Wh kg-1 at 0.1 C, respectively. Moreover, the voltage decay is reduced by 419.8 mV compared with LNMO. The regulative interaction between Mn 3d and isolated O 2p bands provides an accurate guidance for solving electrochemical performance deficiencies of lithium-rich manganese-based cathode oxide.

17.
Angew Chem Int Ed Engl ; 61(36): e202208642, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35822462

ABSTRACT

Theoretical calculations unveil that the formation of Os-OsSe2 heterostructures with neutralized work function (WF) perfectly balances the electronic state between strong (Os) and weak (OsSe2 ) adsorbents and bidirectionally optimizes the hydrogen evolution reaction (HER) activity of Os sites, significantly reducing thermodynamic energy barrier and accelerating kinetics process. Then, heterostructural Os-OsSe2 is constructed for the first time by a molten salt method and confirmed by in-depth structural characterization. Impressively, due to highly active sites endowed by the charge balance effect, Os-OsSe2 exhibits ultra-low overpotentials for HER in both acidic (26 mV @ 10 mA cm-2 ) and alkaline (23 mV @ 10 mA cm-2 ) media, surpassing commercial Pt catalysts. Moreover, the solar-to-hydrogen device assembled with Os-OsSe2 further highlights its potential application prospects. Profoundly, this special heterostructure provides a new model for rational selection of heterocomponents.

18.
Small ; 17(39): e2102777, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34390190

ABSTRACT

Realizing efficiency and stable hydrogen production by water electrolysis under high current densities is essential to the forthcoming hydrogen economy. However, its industrial breakthrough is seriously limited by bifunctional catalysts with slow hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic processes. Herein, an ultralow Ru incorporated amorphous cobalt-based oxide (Ru-CoOx /NF), effectively driving the electrolysis of water at high current densities in alkaline water and seawater, is designed and constructed. In 1 m KOH, to reach the current density of 1000 mA cm-2 for HER and OER, it only needs 252 and 370 mV overpotentials, respectively, beyond commercial Pt/C and RuO2 catalysts. At the high current density, it also presents outstanding electrochemical stability. Then the electrolyzer apparatus assembled with Ru-CoOx /NF, just requires the ultra-low voltage of 2.2 and 2.62 V to support the current density of 1000 mA cm-2 in alkaline water and seawater electrolysis, respectively, for hydrogen production, better than that of the commercial Pt/C and RuO2 catalysts. This work demonstrates that Ru-CoOx /NF is one of the most promising catalysts for industrial applications and provides a possibility for exploration of high-current-density water electrocatalysis by changing the crystallinity of the catalyst.

19.
Small ; 17(29): e2101001, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34145745

ABSTRACT

To improve the catalytic activity of the catalysts, it is key to intensifying the intrinsic activity of active sites or increasing the exposure of accessible active sites. In this work, an efficient oxygen reduction electrocatalyst is designed that confines plentiful FeCx nanoclusters with Fe-N4 sites in a concave porous S-N co-doped carbon matrix, readily accessible for the oxygen reduction reaction (ORR). Sulfate ions react with the carbon derived from ZIF-8 at high temperatures, leading to the shrinkage of the carbon framework and then forming a concave structure with abundant macropores and mesopores with S incorporation. Such an architecture promotes the exposure of active sites and accelerates remote mass transfer. As a result, the catalyst (Fe/S-NC) with a large number of C-S-C, Fe-N4 , and FeCx nanoclusters presents impressive ORR activity and stability. In alkaline media, the half-wave potential of the best catalyst (Fe/S2 -NC) is 0.91 V, which far exceeds that of commercial platinum carbon (0.85 V), while in acidic media the half-wave potential reaches 0.784 V, comparable to platinum carbon (0.812 V). Furthermore, for the zinc-air battery, the outstanding peak power density of Fe/S2 -NC (170 mW cm-2 ) superior to platinum carbon (108 mW cm-2 ) also highlights its great application potential.

20.
Small ; 17(51): e2104241, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34713571

ABSTRACT

In this study, PtCu-Mo2 C heterostructure with charge redistribution is investigated via first-principles theoretical calculations. Mo2 C can promote the formation of the electron-rich region of PtCu as an active site, displaying an optimized adsorption behavior toward hydrogen in terms of reduced thermodynamic energy barriers. Owing to the attractive density functional theory calculation results, the PtCu-Mo2 C heterostructure is fabricated via carbonization of the unique metal-organic framework (MOF) followed by the replacement reduction reaction for the first time. Owing to its swift kinetics and outstanding specific activity, it exhibits high hydrogen evolution reaction (HER) catalytic activity (26 mV @ 10 mA cm-2 ) and superior mass activity (1 A mgPt -1 at -0.04 V) in acidic media, which is approximately six times that of commercial Pt/C catalysts. The perception of the intrinsic activity origin of the alloy with an excellent structural support can guide the development of Pt-based and other alloy catalysts in future.

SELECTION OF CITATIONS
SEARCH DETAIL