Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 172(5): 979-992.e6, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29456084

ABSTRACT

Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 gene associated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.


Subject(s)
DNA Methylation/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Gene Editing , Neurons/pathology , Animals , CRISPR-Associated Protein 9/metabolism , Epigenesis, Genetic , HEK293 Cells , Heterochromatin/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Kinetics , Male , Mice , Neurons/metabolism , Phenotype , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/metabolism , Trinucleotide Repeat Expansion/genetics
2.
Cell ; 141(5): 872-83, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20471072

ABSTRACT

The presence of two active X chromosomes (XaXa) is a hallmark of the ground state of pluripotency specific to murine embryonic stem cells (ESCs). Human ESCs (hESCs) invariably exhibit signs of X chromosome inactivation (XCI) and are considered developmentally more advanced than their murine counterparts. We describe the establishment of XaXa hESCs derived under physiological oxygen concentrations. Using these cell lines, we demonstrate that (1) differentiation of hESCs induces random XCI in a manner similar to murine ESCs, (2) chronic exposure to atmospheric oxygen is sufficient to induce irreversible XCI with minor changes of the transcriptome, (3) the Xa exhibits heavy methylation of the XIST promoter region, and (4) XCI is associated with demethylation and transcriptional activation of XIST along with H3K27-me3 deposition across the Xi. These findings indicate that the human blastocyst contains pre-X-inactivation cells and that this state is preserved in vitro through culture under physiological oxygen.


Subject(s)
Chromosomes, Human, X/metabolism , Embryonic Stem Cells/metabolism , Oxygen/metabolism , X Chromosome Inactivation , Animals , Cell Differentiation , Female , Histones/metabolism , Humans , Karyotyping , Male , Mice , Oxidative Stress , Pluripotent Stem Cells/metabolism
3.
Proc Natl Acad Sci U S A ; 116(19): 9527-9532, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31019072

ABSTRACT

Zika virus (ZIKV) is a neurotropic and neurovirulent arbovirus that has severe detrimental impact on the developing human fetal brain. To date, little is known about the factors required for ZIKV infection of human neural cells. We identified ZIKV host genes in human pluripotent stem cell (hPSC)-derived neural progenitors (NPs) using a genome-wide CRISPR-Cas9 knockout screen. Mutations of host factors involved in heparan sulfation, endocytosis, endoplasmic reticulum processing, Golgi function, and interferon activity conferred resistance to infection with the Uganda strain of ZIKV and a more recent North American isolate. Host genes essential for ZIKV replication identified in human NPs also provided a low level of protection against ZIKV in isogenic human astrocytes. Our findings provide insights into host-dependent mechanisms for ZIKV infection in the highly vulnerable human NP cells and identify molecular targets for potential therapeutic intervention.


Subject(s)
CRISPR-Cas Systems , Disease Resistance/genetics , Neural Stem Cells/virology , Virus Replication/genetics , Zika Virus Infection/genetics , Zika Virus/physiology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/virology , Cell Line , Female , Genome-Wide Association Study , Humans , Male , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Zika Virus Infection/metabolism , Zika Virus Infection/pathology
4.
J Neurosci ; 40(6): 1186-1193, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024767

ABSTRACT

In vitro differentiation of pluripotent stem cells provides a systematic platform to study development and disease. Recent advances in brain organoid technology have created new opportunities to investigate the formation and function of the human brain, under physiological and pathological conditions. Brain organoids can be generated to model the cellular and structural development of the human brain, and allow the investigation of the intricate interactions between resident neural and glial cell types. Combined with new advances in gene editing, imaging, and genomic analysis, brain organoid technology can be applied to address questions pertinent to human brain development, disease, and evolution. However, the current iterations of brain organoids also have limitations in faithfully recapitulating the in vivo processes. In this perspective, we evaluate the recent progress in brain organoid technology, and discuss the experimental considerations for its utilization.Dual Perspectives Companion Paper: Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems, by Kristina Rehbach, Michael B. Fernando, and Kristen J. Brennand.


Subject(s)
Brain/physiology , Organoids , Brain/embryology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology
5.
Proc Natl Acad Sci U S A ; 115(27): 7117-7122, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29915057

ABSTRACT

Maternal Zika virus (ZIKV) infection during pregnancy is recognized as the cause of an epidemic of microcephaly and other neurological anomalies in human fetuses. It remains unclear how ZIKV accesses the highly vulnerable population of neural progenitors of the fetal central nervous system (CNS), and which cell types of the CNS may be viral reservoirs. In contrast, the related dengue virus (DENV) does not elicit teratogenicity. To model viral interaction with cells of the fetal CNS in vitro, we investigated the tropism of ZIKV and DENV for different induced pluripotent stem cell-derived human cells, with a particular focus on microglia-like cells. We show that ZIKV infected isogenic neural progenitors, astrocytes, and microglia-like cells (pMGLs), but was only cytotoxic to neural progenitors. Infected glial cells propagated ZIKV and maintained ZIKV load over time, leading to viral spread to susceptible cells. DENV triggered stronger immune responses and could be cleared by neural and glial cells more efficiently. pMGLs, when cocultured with neural spheroids, invaded the tissue and, when infected with ZIKV, initiated neural infection. Since microglia derive from primitive macrophages originating in proximity to the maternal vasculature, they may act as a viral reservoir for ZIKV and establish infection of the fetal brain. Infection of immature neural stem cells by invading microglia may occur in the early stages of pregnancy, before angiogenesis in the brain rudiments. Our data are also consistent with ZIKV and DENV affecting the integrity of the blood-brain barrier, thus allowing infection of the brain later in life.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Neuroglia/metabolism , Pregnancy Complications, Infectious/metabolism , Zika Virus Infection/metabolism , Zika Virus/metabolism , Female , Humans , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Neural Stem Cells/pathology , Neural Stem Cells/virology , Neuroglia/pathology , Neuroglia/virology , Pregnancy , Pregnancy Complications, Infectious/pathology , Zika Virus Infection/pathology
6.
Glia ; 68(9): 1692-1728, 2020 09.
Article in English | MEDLINE | ID: mdl-31958188

ABSTRACT

Development, physiological functions, and pathologies of the brain depend on tight interactions between neurons and different types of glial cells, such as astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. Assessing the relative contribution of different glial cell types is required for the full understanding of brain function and dysfunction. Over the recent years, several technological breakthroughs were achieved, allowing "glio-scientists" to address new challenging biological questions. These technical developments make it possible to study the roles of specific cell types with medium or high-content workflows and perform fine analysis of their mutual interactions in a preserved environment. This review illustrates the potency of several cutting-edge experimental approaches (advanced cell cultures, induced pluripotent stem cell (iPSC)-derived human glial cells, viral vectors, in situ glia imaging, opto- and chemogenetic approaches, and high-content molecular analysis) to unravel the role of glial cells in specific brain functions or diseases. It also illustrates the translation of some techniques to the clinics, to monitor glial cells in patients, through specific brain imaging methods. The advantages, pitfalls, and future developments are discussed for each technique, and selected examples are provided to illustrate how specific "gliobiological" questions can now be tackled.


Subject(s)
Astrocytes , Neuroglia , Humans , Microglia , Neurons , Oligodendroglia
7.
Nature ; 515(7526): 274-8, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25307057

ABSTRACT

Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-ß plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-ß peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-ß-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-ß species and phosphorylated tau but did not demonstrate amyloid-ß plaques or neurofibrillary tangles. Here we report that FAD mutations in ß-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-ß, including amyloid-ß plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-ß generation with ß- or γ-secretase inhibitors not only decreased amyloid-ß pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-ß-mediated tau phosphorylation. We have successfully recapitulated amyloid-ß and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cell Culture Techniques/methods , Models, Biological , Neural Stem Cells/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Cell Differentiation , Drug Evaluation, Preclinical/methods , Extracellular Space/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Neural Stem Cells/pathology , Neurites/metabolism , Phosphorylation , Presenilin-1/metabolism , Protein Aggregation, Pathological , Reproducibility of Results , tau Proteins/chemistry , tau Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 108(46): 18714-9, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22065768

ABSTRACT

The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.


Subject(s)
Cell Culture Techniques , Pluripotent Stem Cells/cytology , Tissue Engineering/methods , Biocompatible Materials/chemistry , Cells, Cultured , Humans , Materials Testing , Microscopy, Fluorescence/methods , Ozone/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Surface Properties , Transgenes , Ultraviolet Rays
9.
Nat Nanotechnol ; 19(1): 58-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37500778

ABSTRACT

Structural DNA nanotechnology enables the fabrication of user-defined DNA origami nanostructures (DNs) for biological applications. However, the role of DN design during cellular interactions and subsequent biodistribution remain poorly understood. Current methods for tracking DN fates in situ, including fluorescent-dye labelling, suffer from low sensitivity and dye-induced artifacts. Here we present origamiFISH, a label-free and universal method for the single-molecule fluorescence detection of DNA origami nanostructures in cells and tissues. origamiFISH targets pan-DN scaffold sequences with hybridization chain reaction probes to achieve 1,000-fold signal amplification. We identify cell-type- and DN shape-specific spatiotemporal distribution patterns within a minute of uptake and at picomolar DN concentrations, 10,000× lower than field standards. We additionally optimize compatibility with immunofluorescence and tissue clearing to visualize DN distribution within tissue cryo-/vibratome sections, slice cultures and whole-mount organoids. Together, origamiFISH enables the accurate mapping of DN distribution across subcellular and tissue barriers for guiding the development of DN-based therapeutics.


Subject(s)
Nanostructures , Nanotechnology , Tissue Distribution , DNA/chemistry , Nanostructures/chemistry , Nucleic Acid Hybridization , Nucleic Acid Conformation
10.
Cell Rep ; 43(5): 114173, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38700984

ABSTRACT

Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Neurons , Organoids , PTEN Phosphohydrolase , Humans , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Organoids/metabolism , Neurons/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Mutation/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Signal Transduction , Cell Proliferation , Regulatory-Associated Protein of mTOR/metabolism , Regulatory-Associated Protein of mTOR/genetics , Phenotype
11.
Proc Natl Acad Sci U S A ; 107(20): 9222-7, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20442331

ABSTRACT

Human and mouse embryonic stem cells (ESCs) are derived from blastocyst-stage embryos but have very different biological properties, and molecular analyses suggest that the pluripotent state of human ESCs isolated so far corresponds to that of mouse-derived epiblast stem cells (EpiSCs). Here we rewire the identity of conventional human ESCs into a more immature state that extensively shares defining features with pluripotent mouse ESCs. This was achieved by ectopic induction of Oct4, Klf4, and Klf2 factors combined with LIF and inhibitors of glycogen synthase kinase 3beta (GSK3beta) and mitogen-activated protein kinase (ERK1/2) pathway. Forskolin, a protein kinase A pathway agonist which can induce Klf4 and Klf2 expression, transiently substitutes for the requirement for ectopic transgene expression. In contrast to conventional human ESCs, these epigenetically converted cells have growth properties, an X-chromosome activation state (XaXa), a gene expression profile, and a signaling pathway dependence that are highly similar to those of mouse ESCs. Finally, the same growth conditions allow the derivation of human induced pluripotent stem (iPS) cells with similar properties as mouse iPS cells. The generation of validated "naïve" human ESCs will allow the molecular dissection of a previously undefined pluripotent state in humans and may open up new opportunities for patient-specific, disease-relevant research.


Subject(s)
Cell Dedifferentiation/physiology , Embryonic Stem Cells/physiology , Pluripotent Stem Cells/physiology , Transcriptional Activation/physiology , Animals , Colforsin/pharmacology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , Species Specificity , Transcriptional Activation/drug effects
12.
Front Cell Dev Biol ; 11: 1158373, 2023.
Article in English | MEDLINE | ID: mdl-37101616

ABSTRACT

The brain is arguably the most complex part of the human body in form and function. Much remains unclear about the molecular mechanisms that regulate its normal and pathological physiology. This lack of knowledge largely stems from the inaccessible nature of the human brain, and the limitation of animal models. As a result, brain disorders are difficult to understand and even more difficult to treat. Recent advances in generating human pluripotent stem cells (hPSCs)-derived 2-dimensional (2D) and 3-dimensional (3D) neural cultures have provided an accessible system to model the human brain. Breakthroughs in gene editing technologies such as CRISPR/Cas9 further elevate the hPSCs into a genetically tractable experimental system. Powerful genetic screens, previously reserved for model organisms and transformed cell lines, can now be performed in human neural cells. Combined with the rapidly expanding single-cell genomics toolkit, these technological advances culminate to create an unprecedented opportunity to study the human brain using functional genomics. This review will summarize the current progress of applying CRISPR-based genetic screens in hPSCs-derived 2D neural cultures and 3D brain organoids. We will also evaluate the key technologies involved and discuss their related experimental considerations and future applications.

13.
PLoS Genet ; 5(4): e1000460, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19390610

ABSTRACT

Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS) activity. Stress and inflammatory signaling pathways--such as Jun-N-terminal Kinase (JNK) signaling--repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz), a homologue of vertebrate Apolipoprotein D (ApoD) and Retinol Binding Protein 4 (RBP4). Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan--phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Homeostasis , Membrane Glycoproteins/metabolism , Signal Transduction , Animals , Carrier Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Female , Glucose/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Membrane Glycoproteins/genetics , Stress, Physiological , Transcriptional Activation
14.
J Mol Biol ; 434(3): 167386, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34883115

ABSTRACT

Developmental brain diseases encompass a group of conditions resulting from genetic or environmental perturbations during early development. Despite the increased research attention in recent years following recognition of the prevalence of these diseases, there is still a significant lack of knowledge of their etiology and treatment options. The genetic and clinical heterogeneity of these diseases, in addition to the limitations of experimental animal models, contribute to this difficulty. In this regard, the advent of brain organoid technology has provided a new means to study the cause and progression of developmental brain diseases in vitro. Derived from human pluripotent stem cells, brain organoids have been shown to recapitulate key developmental milestones of the early human brain. Combined with technological advancements in genome editing, tissue engineering, electrophysiology, and multi-omics analysis, brain organoids have expanded the frontiers of human neurobiology, providing valuable insight into the cellular and molecular mechanisms of normal and pathological brain development. This review will summarize the current progress of applying brain organoids to model human developmental brain diseases and discuss the challenges that need to be overcome to further advance their utility.


Subject(s)
Brain Diseases , Brain , Organoids , Pluripotent Stem Cells , Brain/abnormalities , Brain Diseases/embryology , Cell Culture Techniques , Humans , Organoids/abnormalities
15.
Proc Natl Acad Sci U S A ; 105(19): 7088-93, 2008 May 13.
Article in English | MEDLINE | ID: mdl-18458334

ABSTRACT

Apolipoprotein D (ApoD) expression increases in several neurological disorders and in spinal cord injury. We provide a report of a physiological role for human ApoD (hApoD): Flies overexpressing hApoD are long-lived and protected against stress conditions associated with aging and neurodegeneration, including hyperoxia, dietary paraquat, and heat stress. We show that the fly ortholog, Glial Lazarillo, is strongly up-regulated in response to these extrinsic stresses and also can protect in vitro-cultured cells in situations modeling Alzheimer's disease (AD) and Parkinson's disease (PD). In adult flies, hApoD overexpression reduces age-associated lipid peroxide accumulation, suggesting a proximal mechanism of action. Similar data obtained in the mouse [Ganfornina, M.D., et al., (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 10.1111/j.1474-9726.2008.00395.] as well as in plants (Charron et al., personal communication) suggest that ApoD and its orthologs play an evolutionarily conserved role in response to stress, possibly managing or preventing lipid peroxidation.


Subject(s)
Apolipoproteins D/genetics , Drosophila melanogaster/genetics , Glycoproteins/genetics , Longevity , Membrane Transport Proteins/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Up-Regulation/genetics , Aging/drug effects , Amyloid beta-Peptides/toxicity , Animals , Animals, Genetically Modified , Carrier Proteins/genetics , Carrier Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/drug effects , Humans , Lipid Peroxides/metabolism , Longevity/drug effects , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Paraquat/toxicity , Peptide Fragments/toxicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects
16.
Mol Brain ; 14(1): 131, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34461955

ABSTRACT

The phosphatase and tensin homolog (PTEN) protein, encoded by the PTEN gene on chromosome 10, is a negative regulator of the phosphoinositide 3-kinase (PI3K) signaling pathway. Loss of PTEN has been linked to an array of human diseases, including neurodevelopmental disorders such as macrocephaly and autism. However, it remains unknown whether increased dosage of PTEN can lead to human disease. A recent human genetics study identifies chromosome 10 microduplication encompassing PTEN in patients with microcephaly. Here we generated a human brain organoid model of increased PTEN dosage. We showed that mild PTEN overexpression led to reduced neural precursor proliferation, premature neuronal differentiation, and the formation of significantly smaller brain organoids. PTEN overexpression resulted in decreased AKT activation, and treatment of wild-type organoids with an AKT inhibitor recapitulated the reduced brain organoid growth phenotypes. Together, our findings provide functional evidence that PTEN is a dosage-sensitive gene that regulates human neurodevelopment, and that increased PTEN dosage in brain organoids results in microcephaly-like phenotypes.


Subject(s)
Microcephaly/genetics , Organoids/metabolism , PTEN Phosphohydrolase/biosynthesis , Cell Line , Embryoid Bodies/drug effects , Gene Dosage , Gene Duplication , Genes, Reporter , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/physiology , Phosphorylation , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction
17.
Sci Adv ; 7(5)2021 01.
Article in English | MEDLINE | ID: mdl-33514545

ABSTRACT

Slow progress in the fight against neurodegenerative diseases (NDs) motivates an urgent need for highly controlled in vitro systems to investigate organ-organ- and organ-immune-specific interactions relevant for disease pathophysiology. Of particular interest is the gut/microbiome-liver-brain axis for parsing out how genetic and environmental factors contribute to NDs. We have developed a mesofluidic platform technology to study gut-liver-cerebral interactions in the context of Parkinson's disease (PD). It connects microphysiological systems (MPSs) of the primary human gut and liver with a human induced pluripotent stem cell-derived cerebral MPS in a systemically circulated common culture medium containing CD4+ regulatory T and T helper 17 cells. We demonstrate this approach using a patient-derived cerebral MPS carrying the PD-causing A53T mutation, gaining two important findings: (i) that systemic interaction enhances features of in vivo-like behavior of cerebral MPSs, and (ii) that microbiome-associated short-chain fatty acids increase expression of pathology-associated pathways in PD.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Parkinson Disease , Brain/metabolism , Humans , Liver/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism
18.
Curr Biol ; 16(7): 674-9, 2006 Apr 04.
Article in English | MEDLINE | ID: mdl-16581512

ABSTRACT

Increased Apolipoprotein D (ApoD) expression has been reported in various neurological disorders, including Alzheimer's disease, schizophrenia, and stroke, and in the aging brain . However, whether ApoD is toxic or a defense is unknown. In a screen to identify genes that protect Drosophila against acute oxidative stress, we isolated a fly homolog of ApoD, Glial Lazarillo (GLaz). In independent transgenic lines, overexpression of GLaz resulted in increased resistance to hyperoxia (100% O(2)) as well as a 29% extension of lifespan under normoxia. These flies also displayed marked improvements in climbing and walking ability after sublethal exposure to hyperoxia. Overexpression of Glaz also increased resistance to starvation without altering lipid or protein content. To determine whether GLaz might be important in protection against reperfusion injury, we subjected the flies to hypoxia, followed by recovery under normoxia. Overexpression of GLaz was protective against behavioral deficits caused in normal flies by this ischemia/reperfusion paradigm. This and the accompanying paper by Sanchez et al. (in this issue of Current Biology) are the first to manipulate the levels of an ApoD homolog in a model organism. Our data suggest that human ApoD may play a protective role and thus may constitute a therapeutic target to counteract certain neurological diseases.


Subject(s)
Carrier Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Longevity , Membrane Glycoproteins/metabolism , Animals , Animals, Genetically Modified/metabolism , Behavior, Animal , Drosophila/genetics , Longevity/genetics , Oxidative Stress , Oxygen/metabolism
19.
Cell Rep ; 25(2): 368-382.e5, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30304678

ABSTRACT

Most genes mutated in microcephaly patients are expressed ubiquitously, and yet the brain is the only major organ compromised in most patients. Why the phenotype remains brain specific is poorly understood. In this study, we used in vitro differentiation of human embryonic stem cells to monitor the effect of a point mutation in kinetochore null protein 1 (KNL1; CASC5), identified in microcephaly patients, during in vitro brain development. We found that neural progenitors bearing a patient mutation showed reduced KNL1 levels, aneuploidy, and an abrogated spindle assembly checkpoint. By contrast, no reduction of KNL1 levels or abnormalities was observed in fibroblasts and neural crest cells. We established that the KNL1 patient mutation generates an exonic splicing silencer site, which mainly affects neural progenitors because of their higher levels of splicing proteins. Our results provide insight into the brain-specific phenomenon, consistent with microcephaly being the only major phenotype of patients bearing KNL1 mutation.


Subject(s)
Brain/pathology , Kinetochores/pathology , Microcephaly/genetics , Microcephaly/pathology , Microtubule-Associated Proteins/genetics , Mutation , RNA Splicing , Brain/metabolism , Cells, Cultured , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Humans , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Phenotype
20.
Cell Stem Cell ; 20(3): 385-396.e3, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28041895

ABSTRACT

An expansion of the cerebral neocortex is thought to be the foundation for the unique intellectual abilities of humans. It has been suggested that an increase in the proliferative potential of neural progenitors (NPs) underlies the expansion of the cortex and its convoluted appearance. Here we show that increasing NP proliferation induces expansion and folding in an in vitro model of human corticogenesis. Deletion of PTEN stimulates proliferation and generates significantly larger and substantially folded cerebral organoids. This genetic modification allows sustained cell cycle re-entry, expansion of the progenitor population, and delayed neuronal differentiation, all key features of the developing human cortex. In contrast, Pten deletion in mouse organoids does not lead to folding. Finally, we utilized the expanded cerebral organoids to show that infection with Zika virus impairs cortical growth and folding. Our study provides new insights into the mechanisms regulating the structure and organization of the human cortex.


Subject(s)
Cerebrum/cytology , Organoids/cytology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Enzyme Activation/drug effects , Gene Deletion , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Zika Virus/drug effects , Zika Virus/physiology , Zika Virus Infection/pathology , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL