Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34143954

ABSTRACT

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Subject(s)
Bifidobacterium/physiology , Immune System/growth & development , Immune System/microbiology , Anti-Bacterial Agents/pharmacology , Biomarkers/metabolism , Breast Feeding , CD4-Positive T-Lymphocytes/immunology , Cell Polarity , Cell Proliferation , Cytokines/metabolism , Feces/chemistry , Feces/microbiology , Galectin 1/metabolism , Gastrointestinal Microbiome , Humans , Indoles/metabolism , Infant, Newborn , Inflammation/blood , Inflammation/genetics , Intestinal Mucosa/immunology , Metabolome , Milk, Human/chemistry , Oligosaccharides/metabolism , Th17 Cells/immunology , Th2 Cells/immunology , Water
2.
NPJ Vaccines ; 9(1): 42, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388530

ABSTRACT

Type I interferons act as gatekeepers against viral infection, and autoantibodies that neutralize these signaling molecules have been associated with COVID-19 severity and adverse reactions to the live-attenuated yellow fever vaccine. On this background, we sought to examine whether autoantibodies against type I interferons were associated with adverse events following COVID-19 vaccination. Our nationwide analysis suggests that type I interferon autoantibodies were not associated with adverse events after mRNA or viral-vector COVID-19 vaccines.

3.
Oxf Open Immunol ; 4(1): iqad003, 2023.
Article in English | MEDLINE | ID: mdl-37255930

ABSTRACT

Myalgic encephalomyelitis (ME) previously also known as chronic fatigue syndrome is a heterogeneous, debilitating syndrome of unknown etiology responsible for long-lasting disability in millions of patients worldwide. The most well-known symptom of ME is post-exertional malaise, but many patients also experience autonomic dysregulation, cranial nerve dysfunction and signs of immune system activation. Many patients also report a sudden onset of disease following an infection. The brainstem is a suspected focal point in ME pathogenesis and patients with structural impairment to the brainstem often show ME-like symptoms. The brainstem is also where the vagus nerve originates, a critical neuro-immune interface and mediator of the inflammatory reflex which regulate systemic inflammation. Here, we report the results of a randomized, placebo-controlled trial using intranasal mechanical stimulation targeting nerve endings in the nasal cavity, likely from the trigeminal nerve, possibly activating additional centers in the brainstem of ME patients and correlating with a ∼30% reduction in overall symptom scores after 8 weeks of treatment. By performing longitudinal, systems-level monitoring of the blood immune system in these patients, we uncover signs of chronic immune activation in ME, as well as immunological correlates of improvement that center around gut-homing immune cells and reduced inflammation. The mechanisms of symptom relief remain to be determined, but transcriptional analyses suggest an upregulation of disease tolerance mechanisms. We believe that these results are suggestive of ME as a condition explained by a maladaptive disease tolerance response following infection.

4.
Cell Rep Med ; 1(5): 100078, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32838342

ABSTRACT

Severe disease of SARS-CoV-2 is characterized by vigorous inflammatory responses in the lung, often with a sudden onset after 5-7 days of stable disease. Efforts to modulate this hyperinflammation and the associated acute respiratory distress syndrome rely on the unraveling of the immune cell interactions and cytokines that drive such responses. Given that every patient is captured at different stages of infection, longitudinal monitoring of the immune response is critical and systems-level analyses are required to capture cellular interactions. Here, we report on a systems-level blood immunomonitoring study of 37 adult patients diagnosed with COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We describe an IFNγ-eosinophil axis activated before lung hyperinflammation and changes in cell-cell co-regulation during different stages of the disease. We also map an immune trajectory during recovery that is shared among patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Adaptive Immunity , Adult , Basophils/metabolism , COVID-19/blood , Cell Communication , Convalescence , Eosinophils/metabolism , Female , Humans , Inflammation , Interferon-gamma/blood , Interleukin-6/blood , Longitudinal Studies , Male , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL