ABSTRACT
Quantitative muscle fat fraction (FF) responsiveness is lower in younger Charcot-Marie-Tooth disease type 1A (CMT1A) patients with lower baseline calf-level FF. We investigated the practicality, validity, and responsiveness of foot-level FF in this cohort involving 22 CMT1A patients and 14 controls. The mean baseline foot-level FF was 25.9 ± 20.3% in CMT1A patients, and the 365-day FF (n = 15) increased by 2.0 ± 2.4% (p < 0.001 vs controls). Intrinsic foot-level FF demonstrated large responsiveness (12-month standardized response mean (SRM) of 0.86) and correlated with the CMT examination score (ρ = 0.58, P = 0.01). Intrinsic foot-level FF has the potential to be used as a biomarker in future clinical trials involving younger CMT1A patients. ANN NEUROL 2024;96:170-174.
Subject(s)
Charcot-Marie-Tooth Disease , Disease Progression , Foot , Magnetic Resonance Imaging , Muscle, Skeletal , Humans , Charcot-Marie-Tooth Disease/diagnostic imaging , Charcot-Marie-Tooth Disease/physiopathology , Child , Male , Female , Adolescent , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Young AdultABSTRACT
BACKGROUND: Diaphragmatic sleep disordered breathing (dSDB) has been recently identified as sleep dysfunction secondary to diaphragmatic weakness in Duchenne muscular dystrophy (DMD). However, scoring criteria for the identification of dSDB are missing.This study aimed to define and validate dSDB scoring criteria and to evaluate whether dSDB severity correlates with respiratory progression in DMD. METHODS: Scoring criteria for diaphragmatic apnoea (dA) and hypopnoeas (dH) have been defined by the authors considering the pattern observed on cardiorespiratory polygraphy (CR) and the dSDB pathophysiology.10 sleep professionals (physiologists, consultants) blinded to each other were involved in a two-round Delphi survey to rate each item of the proposed dSDB criteria (Likert scale 1-5) and to recognise dSDB among other SDB. The scorers' accuracy was tested against the authors' panel.Finally, CR previously conducted in DMD in clinical setting were rescored and diaphragmatic Apnoea-Hypopnoea Index (dAHI) was derived. Pulmonary function (forced vital capacity per cent of predicted, FVC%pred), overnight oxygen saturation (SpO2) and transcutaneous carbon dioxide (tcCO2) were correlated with dAHI. RESULTS: After the second round of Delphi, raters deemed each item of dA and dH criteria as relevant as 4 or 5. The agreement with the panel in recognising dSDB was 81%, kappa 0.71, sensitivity 77% and specificity 85%.32 CRs from DMD patients were reviewed. dSDB was previously scored as obstructive. The dAHI negatively correlated with FVC%pred (r=-0.4; p<0.05). The total number of dA correlated with mean overnight tcCO2 (r 0.4; p<0.05). CONCLUSIONS: dSDB is a newly defined sleep disorder that correlates with DMD progression. A prospective study to evaluate dSDB as a respiratory measure for DMD in clinical and research settings is planned.
Subject(s)
Delphi Technique , Diaphragm , Muscular Dystrophy, Duchenne , Sleep Apnea Syndromes , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/physiopathology , Humans , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/diagnosis , Sleep Apnea Syndromes/etiology , Sleep Apnea Syndromes/complications , Diaphragm/physiopathology , Male , Polysomnography , Severity of Illness Index , Disease Progression , Vital Capacity , Adolescent , ChildABSTRACT
OBJECTIVE: The paucity of longitudinal natural history studies in MPZ neuropathy remains a barrier to clinical trials. We have completed a longitudinal natural history study in patients with MPZ neuropathies across 13 sites of the Inherited Neuropathies Consortium. METHODS: Change in Charcot-Marie-Tooth Examination Score (CMTES) and Rasch modified CMTES (CMTES-R) were evaluated using longitudinal regression over a 5-year period in subjects with MPZ neuropathy. Data from 139 patients with MPZ neuropathy were examined. RESULTS: The average baseline CMTES and CMTES-R were 10.84 (standard deviation [SD] = 6.0, range = 0-28) and 14.60 (SD = 7.56, range = 0-32), respectively. A mixed regression model showed significant change in CMTES at years 2-5 (mean change from baseline of 0.87 points at 2 years, p = 0.008). Subgroup analysis revealed greater change in CMTES at 2 years in subjects with axonal as compared to demyelinating neuropathy (mean change of 1.30 points [p = 0.016] vs 0.06 points [p = 0.889]). Patients with a moderate baseline neuropathy severity also showed more notable change, by estimate, than those with mild or severe neuropathy (mean 2-year change of 1.14 for baseline CMTES 8-14 [p = 0.025] vs -0.03 for baseline CMTES 0-7 [p = 0.958] and 0.25 for baseline CMTES ≥ 15 [p = 0.6897]). The progression in patients harboring specific MPZ mutations was highly variable. INTERPRETATION: CMTES is sensitive to change over time in adult patients with axonal but not demyelinating forms of MPZ neuropathy. Change in CMTES was greatest in patients with moderate baseline disease severity. These findings will inform future clinical trials of MPZ neuropathies. ANN NEUROL 2023;93:563-576.
Subject(s)
Charcot-Marie-Tooth Disease , Adult , Humans , Charcot-Marie-Tooth Disease/genetics , Longitudinal Studies , Myelin P0 Protein/genetics , Mutation , Disease ProgressionABSTRACT
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.
Subject(s)
Amyotrophic Lateral Sclerosis , Hereditary Sensory and Autonomic Neuropathies , Neurodegenerative Diseases , Child , Humans , Amyotrophic Lateral Sclerosis/genetics , Sphingolipids , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Hereditary Sensory and Autonomic Neuropathies/genetics , SerineABSTRACT
INTRODUCTION/AIMS: Eteplirsen, approved in the US for patients with Duchenne muscular dystrophy (DMD) with exon 51 skip-amenable variants, is associated with attenuated ambulatory/pulmonary decline versus DMD natural history (NH). We report overall survival in a US cohort receiving eteplirsen and contextualize these outcomes versus DMD NH. METHODS: US patients with DMD receiving eteplirsen were followed through a patient support program, with data collected on ages at eteplirsen initiation and death/end of follow-up. Individual DMD NH data were extracted by digitizing Kaplan-Meier (KM) curves from published systematic and targeted literature reviews. Overall survival age was analyzed using KM curves and contextualized with DMD NH survival curves; subanalyses considered age groups and duration of eteplirsen exposure. Overall survival time from treatment initiation was also evaluated. RESULTS: A total of 579 eteplirsen-treated patients were included. During a total follow-up of 2119 person-years, median survival age was 32.8 years. DMD NH survival curves extracted from four publications (follow-up for 1224 DMD NH controls) showed overall pooled median survival age of 27.4 years. Eteplirsen-treated patients had significantly longer survival from treatment initiation versus age-matched controls (age-adjusted hazard ratio [HR], 0.65; 95% confidence interval [CI], 0.44-0.98; p < .05). Longer treatment exposure was associated with improved survival (HR, 0.15; 95% CI, 0.05-0.41; p < .001). Comparisons using different DMD NH cohorts to address common risks of bias yielded consistent findings. DISCUSSION: Data suggest eteplirsen may prolong survival in patients with DMD across a wide age range. As more data become available, the impact of eteplirsen on survival will be further elucidated.
Subject(s)
Muscular Dystrophy, Duchenne , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/mortality , Humans , Male , Child , Adolescent , Adult , Child, Preschool , Young Adult , Morpholinos/therapeutic use , Female , Cohort Studies , Follow-Up Studies , Kaplan-Meier EstimateABSTRACT
INTRODUCTION/AIMS: Current upper limb assessments in pediatric spinal muscular atrophy (SMA) may not adequately capture change with disease progression. Our aim was to examine the relationship between motor function, strength, and hand/finger mobility of the upper limb in treatment-naïve children with SMA Types 2 and 3 to assess new methods to supplement current outcomes. METHODS: The Revised Upper Limb Module (RULM), grip and pinch strength, and hand/finger mobility data were collected from 19 children with SMA Types 2 and 3 aged 5.2-16.9 years over a year. RESULTS: A median loss between 0.5 and 2.5 points in the RULM was seen across all SMA subgroups with the biggest median loss recorded between 10 and 14 years of age. The grip strength loss was -0.06 kg (-4.69 to 3.49; IQR, 1.21); pinch improvement of 0.05 (-0.65 to 1.27; IQR, 0.48); hand/finger mobility test improvement of 4 points (-24 to 14; IQR, 6.75) for the whole cohort. Significant correlations were found between the RULM and grip strength (p < .001), RULM and pinch strength (p < .001), RULM and revised Brooke (p < .001), grip strength and pinch strength (p < .001). DISCUSSION: The combined use of the RULM, dynamometry, and hand mobility provide insight about correlations between function and strength in children with SMA. The RULM and grip strength assessments captured a significant decline in upper limb function, whereas the pinch and finger/hand mobility showed an improvement over the course of 1 year and these results should be considered for future studies.
Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Humans , Child , Adolescent , Upper Extremity , Hand , Hand StrengthABSTRACT
INTRODUCTION/AIMS: Available studies on scoliosis surgery in spinal muscular atrophy (SMA) have focused on the primary outcome of the procedure-the correction of the curve-whereas research focusing on secondary outcomes is scarce. We aimed to investigate postsurgical changes in respiratory function, motor function, weight, pain, and satisfaction. METHODS: We retrospectively reviewed the clinical notes of 32 disease-modifying treatment-naïve patients (26 SMA2, 6 nonambulant SMA3). We also performed investigator-developed phone interviews and conducted a focus group with families on postsurgical satisfaction. RESULTS: Mean annual rate of forced vital capacity percent decline improved in SMA2: -3.2% postsurgery versus -6.9% presurgery (p < .001), with similar trajectories in SMA3. Gross motor functional scores (Hammersmith Functional Motor Scale) available in 12/32 dropped immediately after surgery: median loss of 6.5 points, with relatively spared upper limb function. Weight z-scores postsurgery dropped in 16/32, requiring food supplements (5/16); one/16 lost >5% of total weight requiring gastrostomy. Postsurgical pain was frequently reported, especially hip pain (13/32). Overall, 10/10 patients/parents participating in the phone interview rated the procedure as very successful for posture and physical appearance. Nonetheless, 7/10 reported postsurgical pain, reduced mobility, and unmet care needs. The seven patients/parents attending the focus group highlighted lack of intensive physiotherapy programs, occupational therapy assistance, and psychological support as postsurgical unmet care needs. DISCUSSION: This study reports a positive impact of scoliosis surgery on respiratory function and overall satisfaction with posture and physical appearance. The observed negative impact on the other outcomes highlights the importance of multidisciplinary approaches to improve postoperative management.
Subject(s)
Scoliosis , Spinal Muscular Atrophies of Childhood , Humans , Scoliosis/surgery , Female , Male , Retrospective Studies , Child , Adolescent , Spinal Muscular Atrophies of Childhood/surgery , Treatment Outcome , Child, Preschool , Patient Satisfaction , Young Adult , AdultABSTRACT
BACKGROUND AND PURPOSE: Treatment with glucocorticoids (GCs) is part of the standard of care in Duchenne muscular dystrophy, but excess weight gain and height stunting are common side-effects. It is still unclear how these growth-related side-effects affect motor function. METHODS: This retrospective cohort study utilized 2228 observations from 648 participants in the UK NorthStar database who had growth and ambulation data recorded between 2006 and 2020. Joint modelling was used to analyse the effect of longitudinal growth centiles on loss of ambulation with respect to GC type and regimen. RESULTS: Loss of ambulation was observed in 113 patients. National estimates of loss of ambulation age were updated by GC group and showed no significant association between loss of ambulation risk and absolute growth centile. However, yearly drift in weight and/or height centile had an associated risk effect on loss of ambulation. Over a 2-year period, a yearly drift in weight from the 50th to the 75th, 75th to the 90th and 90th to the 95th centile was associated with 138%, 118% and 64% increased risk of loss of ambulation, respectively. Conversely, a 2-year drift in height from the 50th to the 25th, 25th to the 10th and 10th to the 5th centile was associated with 53%, 49% and 35% decreased risk of loss of ambulation, respectively. CONCLUSIONS: Our results suggest a complex relationship between growth and loss of ambulation in Duchenne muscular dystrophy boys on chronic GCs, the first step in understanding the effects of drugs which also affect growth patterns.
ABSTRACT
BACKGROUND AND PURPOSE: Spinal muscular atrophy (SMA) is a genetic disorder caused by SMN1 gene mutations. Although studies on available disease-modifying treatments have reported their efficacy and safety, long-term natural history data are lacking for comparison. The aim of this prospective study was to report 4-year changes on the Hammersmith Functional Motor Scale Expanded (HFMSE) in type II and III SMA in relation to several variables such as age, functional status and SMN2 copy number. METHODS: The study involves retrospective analysis of prospectively collected data from international datasets (Belgium, Italy, Spain, USA, UK). HFMSE longitudinal changes were analyzed using linear mixed effect models, examining annualized HFMSE change and its association with variables such as age at baseline, sex, motor function, SMN2 copy number. RESULTS: In SMA type II (n = 226), the 4-year mean change was -2.20 points. The largest mean changes were observed in sitters aged 5-14 years and the lowest in those who lost the ability to sit unsupported. In SMA type III (n = 162), the 4-year mean change was -2.75 points. The largest mean changes were in those aged 7-15 years, whilst the lowest were in those below 7 and in the SMA type IIIa subgroup over 15. Age and score at baseline were predictive of 4-year changes. CONCLUSIONS: Our findings provide natural history reference data for comparison with long-term follow-up of clinical trials or real-world data, highlighting the need to define patterns of changes in smaller SMA subgroups instead of reporting mean changes across an entire SMA cohort.
ABSTRACT
BACKGROUND AND PURPOSE: Spinal muscular atrophy (SMA) is a rare and progressive neuromuscular disorder with varying severity levels. The aim of the study was to calculate minimal clinically important difference (MCID), minimal detectable change (MDC), and values for the Hammersmith Functional Motor Scale Expanded (HFMSE) in an untreated international SMA cohort. METHODS: The study employed two distinct methods. MDC was calculated using distribution-based approaches to consider standard error of measurement and effect size change in a population of 321 patients (176 SMA II and 145 SMA III), allowing for stratification based on age and function. MCID was assessed using anchor-based methods (receiver operating characteristic [ROC] curve analysis and standard error) on 76 patients (52 SMA II and 24 SMA III) for whom the 12-month HFMSE could be anchored to a caregiver-reported clinical perception questionnaire. RESULTS: With both approaches, SMA type II and type III patients had different profiles. The MCID, using ROC analysis, identified optimal cutoff points of -2 for type II and -4 for type III patients, whereas using the standard error we found the optimal cutoff points to be 1.5 for improvement and -3.2 for deterioration. Furthermore, distribution-based methods uncovered varying values across age and functional status subgroups within each SMA type. CONCLUSIONS: These results emphasize that the interpretation of a single MCID or MDC value obtained in large cohorts with different functional status needs to be made with caution, especially when these may be used to assess possible responses to new therapies.
Subject(s)
Minimal Clinically Important Difference , Muscular Atrophy, Spinal , Humans , Male , Female , Child , Adolescent , Muscular Atrophy, Spinal/physiopathology , Muscular Atrophy, Spinal/diagnosis , Child, Preschool , Adult , Young Adult , Severity of Illness Index , Cohort Studies , Spinal Muscular Atrophies of Childhood/physiopathology , Spinal Muscular Atrophies of Childhood/diagnosis , Infant , Disability EvaluationABSTRACT
Hereditary motor neuropathies (HMN) were first defined as a group of neuromuscular disorders characterized by lower motor neuron dysfunction, slowly progressive length-dependent distal muscle weakness and atrophy, without sensory involvement. Their cumulative estimated prevalence is 2.14/100 000 and, to date, around 30 causative genes have been identified with autosomal dominant, recessive,and X-linked inheritance. Despite the advances of next generation sequencing, more than 60% of patients with HMN remain genetically uncharacterized. Of note, we are increasingly aware of the broad range of phenotypes caused by pathogenic variants in the same gene and of the considerable clinical and genetic overlap between HMN and other conditions, such as Charcot-Marie-Tooth type 2 (axonal), spinal muscular atrophy with lower extremities predominance, neurogenic arthrogryposis multiplex congenita and juvenile amyotrophic lateral sclerosis. Considering that most HMN present during childhood, in this review we primarily aim to summarize key clinical features of paediatric forms, including recent data on novel phenotypes, to help guide differential diagnosis and genetic testing. Second, we describe newly identified causative genes and molecular mechanisms, and discuss how the discovery of these is changing the paradigm through which we approach this group of conditions.
Subject(s)
Charcot-Marie-Tooth Disease , Muscular Atrophy, Spinal , Humans , Charcot-Marie-Tooth Disease/genetics , Muscular Atrophy, Spinal/genetics , Phenotype , Genetic TestingABSTRACT
Duchenne muscular dystrophy (DMD) is characterized by loss of dystrophin in muscle, however patients also have variable degree of intellectual disability and neurobehavioural co-morbidities. In contrast to muscle, in which a single full-length dystrophin isoform (Dp427) is produced, multiple isoforms are produced in the brain, and their deficiency accounts for the variability of CNS manifestations, with increased risk of comorbidities in patients carrying mutations affecting the 3' end of the gene, which disrupt expression of shorter Dp140 and Dp71 isoforms. A mouse model (mdx mouse) lacks Dp427 in muscle and CNS and exhibits exaggerated startle responses to threat, linked to the deficiency of dystrophin in limbic structures such as the amygdala, which normalize with postnatal brain dystrophin-restoration therapies. A pathological startle response is not a recognized feature of DMD, and its characterization has implications for improved clinical management and translational research. To investigate startle responses in DMD, we used a novel fear-conditioning task in an observational study of 56 males aged 7-12 years (31 affected boys, mean age 9.7 ± 1.8 years; 25 controls, mean age 9.6 ± 1.4 years). Trials of two neutral visual stimuli were presented to participants: one 'safe' cue presented alone; one 'threat' cue paired with an aversive noise to enable conditioning of physiological startle responses (skin conductance response and heart rate). Retention of conditioned physiological responses was subsequently tested by presenting both cues without the aversive noise in an 'Extinction' phase. Primary outcomes were the initial unconditioned skin conductance and change in heart rate responses to the aversive 'threat' and acquisition and retention of conditioned responses after conditioning. Secondary and exploratory outcomes were neuropsychological measures and genotype associations. The mean unconditioned skin conductance response was greater in the DMD group than controls [mean difference 3.0 µS (1.0, 5.1); P = 0.004], associated with a significant threat-induced bradycardia only in the patient group [mean difference -8.7 bpm (-16.9, -0.51); P = 0.04]. Participants with DMD found the task more aversive than controls, with increased early termination rates during the Extinction phase (26% of DMD group versus 0% of controls; P = 0.007). This study provides the first evidence that boys with DMD show similar increased unconditioned startle responses to threat to the mdx mouse, which in the mouse respond to brain dystrophin restoration. Our study provides new insights into the neurobiology underlying the complex neuropsychiatric co-morbidities in DMD and defines an objective measure of this CNS phenotype, which will be valuable for future CNS-targeted dystrophin-restoration studies.
Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Male , Mice , Animals , Dystrophin/genetics , Dystrophin/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Reflex, Startle , Mice, Inbred mdx , Brain/pathology , Biomarkers/metabolism , Protein Isoforms/metabolismABSTRACT
Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3' untranslated region (3'-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3'-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wild-type and mutant 3'-UTR showed significantly increased reporter assay activity in the latter, which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development.
Subject(s)
Charcot-Marie-Tooth Disease , MicroRNAs , Humans , Charcot-Marie-Tooth Disease/pathology , MicroRNAs/genetics , DNA Copy Number Variations , Myelin Proteins/genetics , Myelin Proteins/metabolism , Gene ExpressionABSTRACT
Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.
Subject(s)
Charcot-Marie-Tooth Disease , Female , Humans , Male , Charcot-Marie-Tooth Disease/pathology , Connexins/genetics , Mutation/genetics , Mutation, Missense , Phenotype , Gap Junction beta-1 ProteinABSTRACT
Charcot-Marie-Tooth disease (CMT) reduces health-related quality of life (QOL) in children. We have previously developed and validated the English and Italian versions of the pediatric CMT-specific QOL outcome measure (pCMT-QOL) for children aged 8 to 18. There is currently no parent-proxy CMT QOL outcome measure for use in clinical trials, which could provide complementary information in these children and adolescents. This study describes the validation studies conducted to develop the parent-proxy version of the pCMT-QOL outcome measure for children aged 8 to 18 years old. Development and validation of the parent-proxy version of the pCMT-QOL outcome measure for children aged 8 to 18 years old was iterative, involving identifying relevant domains, item pool generation, prospective pilot testing and clinical assessments, structured focus-group interviews, and psychometric testing, conducted on parents of children with CMT seen at participating sites from the USA, United Kingdom, and Australia. We utilized previously described methods to develop a working parent-proxy version of the pCMT-QOL measure. From 2010 to 2016, the parent-proxy pCMT-QOL working version was administered to 358 parents of children with CMT aged 8 to 18, seen at the participating study sites of the Inherited Neuropathies Consortium. The resulting data underwent rigorous psychometric analysis, including factor analysis, test-retest reliability, internal consistency, convergent validity, IRT analysis, and longitudinal analysis, to develop the final parent-proxy version of the pCMT-QOL outcome measure for children aged 8 to 18 years old. The parent-proxy version of the pCMT-QOL outcome measure is a reliable, valid, and sensitive proxy measure of health-related QOL for children aged 8 to 18 with CMT.
Subject(s)
Charcot-Marie-Tooth Disease , Quality of Life , Adolescent , Humans , Child , Reproducibility of Results , Prospective Studies , Parents , Psychometrics , Surveys and QuestionnairesABSTRACT
OBJECTIVE: To evaluate the parent-proxy version of the pediatric Charcot Marie Tooth specific quality of life (pCMT-QOL) outcome instrument for children aged 7 or younger with CMT. We have previously developed and validated the direct-report pCMT-QOL for children aged 8-18 years and a parent proxy version of the instrument for children 8-18 years old. There is currently no CMT-QOL outcome measure for children aged 0-7 years old. METHODS: Testing was conducted in parents or caregivers of children aged 0-7 years old with CMT evaluated at participating INC sites from the USA, United Kingdom, and Australia. The development of the instrument was iterative, involving identification of relevant domains, item pool generation, prospective pilot testing and clinical assessments, structured focus group interviews, and psychometric testing. The parent-proxy instrument was validated rigorously by examining previously identified domains and undergoing psychometric tests for children aged 0-7. RESULTS: The parent-proxy pCMT-QOL working versions were administered to 128 parents/caregivers of children aged 0-7 years old between 2010 and 2016. The resulting data underwent rigorous psychometric analysis, including factor analysis, internal consistency, and convergent validity, and longitudinal analysis to develop the final parent-proxy version of the pCMT-QOL outcome measure for children aged 0-7 years old. CONCLUSIONS: The parent-proxy version of the pCMT-QOL outcome measure, known as the pCMT-QOL (0-7 years parent-proxy) is a valid and sensitive proxy measure of health-related QOL for children aged 0-7 years with CMT.
Subject(s)
Charcot-Marie-Tooth Disease , Quality of Life , Humans , Child , Adolescent , Infant, Newborn , Infant , Child, Preschool , Prospective Studies , Parents , Proxy , Psychometrics/methods , Reproducibility of Results , Surveys and QuestionnairesABSTRACT
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Subject(s)
Biomarkers/analysis , Gene Expression Regulation , Muscular Diseases/pathology , Muscular Dystrophies/pathology , Mutation , PAX7 Transcription Factor/genetics , Satellite Cells, Skeletal Muscle/pathology , Gene Expression Profiling , Humans , Muscular Diseases/genetics , Muscular Dystrophies/genetics , Satellite Cells, Skeletal Muscle/metabolismABSTRACT
A proper interaction between muscle-derived collagen XXV and its motor neuron-derived receptors protein tyrosine phosphatases σ and δ (PTP σ/δ) is indispensable for intramuscular motor innervation. Despite this, thus far, pathogenic recessive variants in the COL25A1 gene had only been detected in a few patients with isolated ocular congenital cranial dysinnervation disorders. Here we describe five patients from three unrelated families with recessive missense and splice site COL25A1 variants presenting with a recognizable phenotype characterized by arthrogryposis multiplex congenita with or without an ocular congenital cranial dysinnervation disorder phenotype. The clinical features of the older patients remained stable over time, without central nervous system involvement. This study extends the phenotypic and genotypic spectrum of COL25A1 related conditions, and further adds to our knowledge of the complex process of intramuscular motor innervation. Our observations indicate a role for collagen XXV in regulating the appropriate innervation not only of extraocular muscles, but also of bulbar, axial, and limb muscles in the human.
Subject(s)
Arthrogryposis , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Face , Humans , Muscle, Skeletal , Mutation , PhenotypeABSTRACT
In addition to progressive muscular degeneration due to dystrophin mutations, 1/3 of Duchenne muscular dystrophy (DMD) patients present cognitive deficits. However, there is currently an incomplete understanding about the function of the multiple dystrophin isoforms in human brains. Here, we tested the hypothesis that dystrophin deficiency affects glial function in DMD and could therefore contribute to neural impairment. We investigated human dystrophin isoform expression with development and differentiation and response to damage in human astrocytes from control and induced pluripotent stem cells from DMD patients. In control cells, short dystrophin isoforms were up-regulated with development and their expression levels changed differently upon neuronal and astrocytic differentiation, as well as in 2-dimensional versus 3-dimensional astrocyte cultures. All DMD-astrocytes tested displayed altered morphology, proliferative activity and AQP4 expression. Furthermore, they did not show any morphological change in response to inflammatory stimuli and their number was significantly lower as compared to stimulated healthy astrocytes. Finally, DMD-astrocytes appeared to be more sensitive than controls to oxidative damage as shown by their increased cell death. Behavioral and metabolic defects in DMD-astrocytes were consistent with gene pathway dysregulation shared by lines with different mutations as demonstrated by bulk RNA-seq analysis. Together, our DMD model provides evidence for altered astrocyte function in DMD suggesting that defective astrocyte responses may contribute to neural impairment and might provide additional potential therapeutic targets.
Subject(s)
Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne , Astrocytes/metabolism , Cell Differentiation , Dystrophin/genetics , Dystrophin/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolismABSTRACT
AIMS: TRAPPC11, a subunit of the transport protein particle (TRAPP) complex, is important for complex integrity and anterograde membrane transport from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment. Several individuals with TRAPPC11 mutations have been reported with muscle weakness and other features including brain, liver, skeletal and eye involvement. A detailed analysis of brain and muscle pathology will further our understanding of the presentation and aetiology of TRAPPC11 disease. METHODS: We describe five cases of early-onset TRAPPC11-related muscular dystrophy with a systematic review of muscle pathology in all five individuals, post-mortem brain pathology findings in one and membrane trafficking assays in another. RESULTS: All affected individuals presented in infancy with muscle weakness, motor delay and elevated serum creatine kinase (CK). Additional features included cataracts, liver disease, intellectual disability, cardiomyopathy, movement disorder and structural brain abnormalities. Muscle pathology in all five revealed dystrophic changes, universal hypoglycosylation of alpha-dystroglycan and variably reduced dystrophin-associated complex proteins. Membrane trafficking assays showed defective Golgi trafficking in one individual. Neuropathological examination of one individual revealed cerebellar atrophy, granule cell hypoplasia, Purkinje cell (PC) loss, degeneration and dendrite dystrophy, reduced alpha-dystroglycan (IIH6) expression in PC and dentate neurones and absence of neuronal migration defects. CONCLUSIONS: This report suggests that recessive mutations in TRAPPC11 are linked to muscular dystrophies with hypoglycosylation of alpha-dystroglycan. The structural cerebellar involvement that we document for the first time resembles the neuropathology reported in N-linked congenital disorders of glycosylation (CDG) such as PMM2-CDG, suggesting defects in multiple glycosylation pathways in this condition.