Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586884

ABSTRACT

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Subject(s)
Pharmacology, Clinical , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Carrier Proteins , Ligands
2.
J Biol Chem ; 294(1): 10-19, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30455347

ABSTRACT

RAR-related orphan receptor γ (RORγ) is a nuclear receptor that plays an essential role in the development of T helper 17 (Th17) cells of the adaptive immune system. The NLRP3 inflammasome is a component of the innate immune system that processes interleukin (IL)-1ß into a mature cytokine. Elevated activity of the NLRP3 inflammasome contributes to the progression of an array of inflammatory diseases. Bone marrow-derived macrophages (BMDMs) isolated from RORγ-null mice displayed reduced capacity to secrete IL-1ß, and they also displayed a reduction in Nlrp3 and Il1b gene expression. Examination of the promoters of the Il1b and Nlrp3 genes revealed multiple putative ROR response elements (ROREs) that were occupied by RORγ. RORγ inverse agonists were effective inhibitors of the inflammasome. RORγ inverse agonists suppressed lipopolysaccharide (LPS)/ATP-stimulated IL-1ß secretion and expression of Il1b and Nlrp3 in BMDMs. Additionally, the ability of the RORγ inverse agonists to suppress IL-1ß secretion was lost in Nlrp3-null macrophages. The potential for targeting the NLRP3 inflammasome in vivo using RORγ inverse agonists was examined in two models: LPS-induced sepsis and fulminant hepatitis. Pharmacological inhibition of RORγ activity reduced plasma IL-1ß as well as IL-1ß production by peritoneal macrophages in a model of LPS-induced sepsis. Additionally, RORγ inverse agonists reduced mortality in an LPS/d-galactosamine-induced fulminant hepatitis mouse model. These results illustrate a major role for RORγ in regulation of innate immunity via modulation of NLRP3 inflammasome activity. Furthermore, these data suggest that inhibiting the NLRP3 inflammasome with RORγ inverse agonists may be an effective method to treat NLRP3-associated diseases.


Subject(s)
Immunity, Innate , Inflammasomes/immunology , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Th17 Cells/immunology , Animals , Galactosamine/toxicity , Inflammasomes/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Lipopolysaccharides/toxicity , Liver Failure, Acute/chemically induced , Liver Failure, Acute/genetics , Liver Failure, Acute/immunology , Liver Failure, Acute/pathology , Macrophages/pathology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Response Elements/immunology , Sepsis/chemically induced , Sepsis/genetics , Sepsis/immunology , Sepsis/pathology , Th17 Cells/pathology
3.
Biochemistry ; 53(21): 3502-8, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24853497

ABSTRACT

Trinucleotide bulges in RNA commonly occur in nature. Yet, little data exists concerning the thermodynamic parameters of this motif. Algorithms that predict RNA secondary structure from sequence currently attribute a constant free energy value of 3.2 kcal/mol to all trinucleotide bulges, regardless of bulge sequence. To test the accuracy of this model, RNA duplexes that contain frequent naturally occurring trinucleotide bulges were optically melted, and their thermodynamic parameters-enthalpy, entropy, free energy, and melting temperature-were determined. The thermodynamic data were used to derive a new model to predict the free energy contribution of trinucleotide bulges to RNA duplex stability: ΔG°37, trint bulge = ΔG°37, bulge + ΔG°37, AU + ΔG°37, GU. The parameter ΔG°37, bulge is variable depending upon the purine and pyrimidine composition of the bulge, ΔG°37, AU is a 0.49 kcal/mol penalty for an A-U closing pair, and ΔG° 37, GU is a -0.56 kcal/mol bonus for a G-U closing pair. With both closing pair and bulge sequence taken into account, this new model predicts free energy values within 0.30 kcal/mol of the experimental value. The new model can be used by algorithms that predict RNA free energies as well as algorithms that use free energy minimization to predict RNA secondary structure from sequence.


Subject(s)
Oligonucleotides/chemistry , RNA/chemistry , Algorithms , Models, Theoretical , Nucleic Acid Conformation , Nucleotide Motifs , RNA Stability , Thermodynamics , Transition Temperature
4.
Nat Commun ; 13(1): 7131, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36414641

ABSTRACT

The nuclear receptor REV-ERB plays an important role in a range of physiological processes. REV-ERB behaves as a ligand-dependent transcriptional repressor and heme has been identified as a physiological agonist. Our current understanding of how ligands bind to and regulate transcriptional repression by REV-ERB is based on the structure of heme bound to REV-ERB. However, porphyrin (heme) analogues have been avoided as a source of synthetic agonists due to the wide range of heme binding proteins and potential pleotropic effects. How non-porphyrin synthetic agonists bind to and regulate REV-ERB has not yet been defined. Here, we characterize a high affinity synthetic REV-ERB agonist, STL1267, and describe its mechanism of binding to REV-ERB as well as the method by which it recruits transcriptional corepressor both of which are unique and distinct from that of heme-bound REV-ERB.


Subject(s)
Nuclear Receptor Subfamily 1, Group D, Member 1 , Porphyrins , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Heme/metabolism , Ligands , Porphyrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL