ABSTRACT
In contrast to prevalent strategies which make use of ß-sheet mimetics to block Aß fibrillar growth, in this study, we designed a series of sulfonyl-γ-AApeptide helices that targeted the crucial α-helix domain of Aß13-26 and stabilized Aß conformation to avoid forming the neurotoxic Aß oligomeric ß-sheets. Biophysical assays such as amyloid kinetics and TEM demonstrated that the Aß oligomerization and fibrillation could be greatly prevented and even reversed in the presence of sulfonyl-γ-AApeptides in a sequence-specific and dose-dependent manner. The studies based on circular dichroism, Two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) spectra unambiguously suggested that the sulfonyl-γ-AApeptide Ab-6 could bind to the central region of Aß42 and induce α-helix conformation in Aß. Additionally, Electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) was employed to rule out a colloidal mechanism of inhibitor and clearly supported the capability of Ab-6 for inhibiting the formation of Aß aggregated forms. Furthermore, Ab-6 could rescue neuroblastoma cells by eradicating Aß-mediated cytotoxicity even in the presence of pre-formed Aß aggregates. The confocal microscopy demonstrated that Ab-6 could still specifically bind Aß42 and colocalize into mitochondria in the cellular environment, suggesting the rescue of cell viability might be due to the protection of mitochondrial function otherwise impaired by Aß42 aggregation. Taken together, our studies indicated that sulfonyl-γ-AApeptides as helical peptidomimetics could direct Aß into the off-pathway helical secondary structure, thereby preventing the formation of Aß oligomerization, fibrillation and rescuing Aß induced cell cytotoxicity.
Subject(s)
Amides , Amyloid beta-Peptides , Amyloid , Amyloid/chemistry , Protein Conformation, alpha-Helical , Molecular Conformation , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolismABSTRACT
Amyloid-ß peptides (Aß) assemble into both rigid amyloid fibrils and metastable oligomers termed AßO or protofibrils. In Alzheimer's disease, Aß fibrils constitute the core of senile plaques, but Aß protofibrils may represent the main toxic species. Aß protofibrils accumulate at the exterior of senile plaques, yet the protofibril-fibril interplay is not well understood. Applying chemical kinetics and atomic force microscopy to the assembly of Aß and lysozyme, protofibrils are observed to bind to the lateral surfaces of amyloid fibrils. When utilizing Aß variants with different critical oligomer concentrations, the interaction inhibits the autocatalytic proliferation of amyloid fibrils by secondary nucleation on the fibril surface. Thus, metastable oligomers antagonize their replacement by amyloid fibrils both by competing for monomers and blocking secondary nucleation sites. The protofibril-fibril interaction governs their temporal evolution and potential to exert specific toxic activities.
Subject(s)
Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Kinetics , Microscopy, Atomic Force , Muramidase/metabolism , Protein Aggregates/physiology , Protein Binding , Surface PropertiesABSTRACT
Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys247 and Lys250, two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC50, delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions.
Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Carrier Proteins/metabolism , Microfilament Proteins/metabolism , Ubiquitin/metabolism , Animals , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , Rats , Ubiquitin-Protein Ligases/metabolism , UbiquitinationABSTRACT
Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.
Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Humans , Microscopy, Atomic Force , Models, Chemical , Protein Conformation , Protein Multimerization , Protein Stability , Salinity , Spectroscopy, Fourier Transform InfraredABSTRACT
Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly.
Subject(s)
Amyloid/chemistry , Muramidase/chemistry , Amyloid/metabolism , Muramidase/metabolismABSTRACT
Deposition of extracellular Amyloid Beta (Aß) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aß and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aß42 oligomers (AßOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Brain , Gentian Violet , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Mice , Gentian Violet/chemistry , Amyloid/metabolism , Amyloid/chemistry , Positron-Emission Tomography , FemaleABSTRACT
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross ß-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific ß-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.
Subject(s)
Muramidase/chemistry , Muramidase/chemical synthesis , Peptide Mapping , Animals , Chickens , Muramidase/metabolism , Particle Size , Protein Conformation , Surface PropertiesABSTRACT
Amyloid Diseases involve the growth of disease specific proteins into amyloid fibrils and their deposition in protein plaques. Amyloid fibril formation is typically preceded by oligomeric intermediates. Despite significant efforts, the specific role fibrils or oligomers play in the etiology of any given amyloid disease remains controversial. In neurodegenerative disease, though, amyloid oligomers are widely considered critical contributors to disease symptoms. Aside from oligomers as inevitable on-pathway precursors of fibril formation, there is significant evidence for off-pathway oligomer formation competing with fibril growth. The distinct mechanisms and pathways of oligomer formation directly affect our understanding under which conditions oligomers emerge in vivo, and whether their formation is directly coupled to, or distinct from, amyloid fibril formation. In this review, we will discuss the basic energy landscapes underlying the formation of on-pathway vs. off-pathway oligomers, their relation to the related amyloid aggregation kinetics, and their resulting implications for disease etiology. We will review evidence on how differences in the local environment of amyloid assembly can dramatically shift the relative preponderance of oligomers vs. fibrils. Finally, we will comment on gaps in our knowledge of oligomer assembly, of their structure, and on how to assess their relevance to disease etiology.
ABSTRACT
Elastin-like polypeptides (ELPs) are peptide-based biomaterials with residue sequence (VPGXG)n where X is any residue except proline. ELPs are a useful modality for delivering biologically active proteins (growth factors, protease inhibitors, anti-inflammatory peptides, etc.) as fusion proteins (ELP-FP). ELP-FPs are particularly cost-effective because they can be rapidly purified using Inverse Temperature Cycling (ITC) via the reversible formation and precipitation of entropically driven aggregates above a transition temperature (Tt ). When ELP fusion proteins (ELP-FPs) contain significant charge density at physiological pH, electrostatic repulsion between them severely inhibits aggregate formation. The literature does not currently describe methods for purifying ELP-FPs containing charged proteins on either side of the ELP sequence as fusion partners without organic solvents. Here, the isoelectric point (pI) of ELP-FPs is discussed as a means of neutralizing surface charges on ELP-FPs and increasing ITC yield to dramatically high levels. We use pI-based phase separation (pI-BPS) to purify ELP-FPs containing cationic and anionic fusion proteins. We report a dramatic increase in protein yield when using pI-BPS for purification of ELP-FPs. Proteins purified by this method also retain the functional activity of the protein present in the ELP-FP. Techniques developed here enable significant diversification of possible fusion proteins delivered by ELPs as ELP-FPs by allowing them to be produced and purified at higher quantities and yields.
Subject(s)
Elastin-Like Polypeptides , Elastin , Isoelectric Point , Elastin/chemistry , Phase Separation , Peptides/chemistry , Recombinant Fusion Proteins/geneticsABSTRACT
The deposition of dense fibril plaques represents the pathological hallmark for a multitude of human disorders, including many neurodegenerative diseases. Fibril plaques are predominately composed of amyloid fibrils, characterized by their underlying cross beta-sheet architecture. Research into the mechanisms of amyloid formation has mostly focused on characterizing and modeling the growth of individual fibrils and associated oligomers from their monomeric precursors. Much less is known about the mechanisms causing individual fibrils to assemble into ordered fibrillar suprastructures. Elucidating the mechanisms regulating this "secondary" self-assembly into distinct suprastructures is important for understanding how individual protein fibrils form the prominent macroscopic plaques observed in disease. Whether and how amyloid fibrils assemble into either 2D or 3D supramolecular structures also relates to ongoing efforts on using amyloid fibrils as substrates or scaffolds for self-assembling functional biomaterials. Here, we investigated the conditions under which preformed amyloid fibrils of a lysozyme assemble into larger superstructures as a function of charge screening or pH. Fibrils either assembled into three-dimensional gel clusters or two-dimensional fibril sheets. The latter displayed optical birefringence, diagnostic of amyloid plaques. We presume that pH and salt modulate fibril charge repulsion, which allows anisotropic fibril-fibril attraction to emerge and drive the transition from 3D to 2D fibril self-assembly.
Subject(s)
Amyloid , Neurodegenerative Diseases , Humans , Amyloid/chemistry , Amyloidogenic Proteins , Sodium Chloride , Amyloid beta-Peptides/chemistryABSTRACT
Conventional approaches to study ligand-receptor interactions using solution-state NMR often involve laborious sample preparation, isotopic labeling, and receptor reconstitution. Each of these steps remains challenging for membrane proteins such as G protein-coupled receptors (GPCRs). Here we introduce a combinational approach integrating NMR and homogenized membrane nano-discs preparation to characterize the ligand-GPCR interactions. The approach will have a great potential for drug screening as it benefits from minimal receptor preparation, minimizing non-specific binding. In addition, the approach maintains receptor structural heterogeneity essential for functional diversity, making it feasible for probing a more reliable ligand-GPCR interaction that is vital for faithful ligand discovery.
Subject(s)
Receptors, G-Protein-Coupled , Drug Evaluation, Preclinical/methods , Ligands , Magnetic Resonance Spectroscopy/methods , Protein Binding , Receptors, G-Protein-Coupled/metabolismABSTRACT
Molecular chaperones regulate the aggregation of a number of proteins that pathologically misfold and accumulate in neurodegenerative diseases. Identifying ways to manipulate these proteins in disease models is an area of intense investigation; however, the translation of these results to the mammalian brain has progressed more slowly. In this study, we investigated the ability of one of these chaperones, heat shock protein 27 (Hsp27), to modulate tau dynamics. Recombinant wild-type Hsp27 and a genetically altered version of Hsp27 that is perpetually pseudo-phosphorylated (3×S/D) were generated. Both Hsp27 variants interacted with tau, and atomic force microscopy and dynamic light scattering showed that both variants also prevented tau filament formation. However, extrinsic genetic delivery of these two Hsp27 variants to tau transgenic mice using adeno-associated viral particles showed that wild-type Hsp27 reduced neuronal tau levels, whereas 3×S/D Hsp27 was associated with increased tau levels. Moreover, rapid decay in hippocampal long-term potentiation (LTP) intrinsic to this tau transgenic model was rescued by wild-type Hsp27 overexpression but not by 3×S/D Hsp27. Because the 3×S/D Hsp27 mutant cannot cycle between phosphorylated and dephosphorylated states, we can conclude that Hsp27 must be functionally dynamic to facilitate tau clearance from the brain and rescue LTP; however, when this property is compromised, Hsp27 may actually facilitate accumulation of soluble tau intermediates.
Subject(s)
HSP27 Heat-Shock Proteins/physiology , Molecular Dynamics Simulation , Neuronal Plasticity/genetics , tau Proteins/genetics , tau Proteins/metabolism , Animals , Female , Hippocampus/metabolism , Hippocampus/pathology , Male , Mice , Mice, Transgenic , Phosphorylation/physiologyABSTRACT
There is compelling evidence that small oligomeric aggregates, emerging during the assembly of amyloid fibrils and plaques, are important molecular pathogens in many amyloid diseases. While significant progress has been made in revealing the mechanisms underlying fibril growth, understanding how amyloid oligomers fit into the fibril assembly process, and how they contribute to the pathogenesis of amyloid diseases, has remained elusive. Commonly, amyloid oligomers are considered to be metastable, early-stage precursors to fibril formation that are either on- or off-pathway from fibril growth. In addition, amyloid oligomers have been reported to colocalize with late-stage fibrils and plaques. Whether these early and late-stage oligomer species are identical or distinct, and whether both are relevant to pathogenesis remains unclear. Here we report on the formation of two distinct oligomer species of lysozyme, formed either during the early or late-stages of in vitro fibril growth. We further observe that the pH change from in vitro growth conditions to cell media used for toxicity studies induced distinct mesoscopic precipitates, two of which resemble either diffuse or neuritic plaques seen in Alzheimer's histology. Our biophysical characterization indicates that both oligomer species share morphological and tinctorial features considered characteristic for amyloid oligomers. At the same time, their sizes, morphologies, their immunostaining, detailed tinctorial profiles and, most prominently, their biological activity are clearly distinct from each other. Probing the conditions promoting the formation of these two distinct oligomer species suggests distinct roles of charge interactions, hydrophobicity and monomer flexibility in directing oligomer assembly.
ABSTRACT
Using static and dynamic light scattering we have investigated the effects of either strongly chaotropic, nearly neutral or strongly kosmotropic salt ions on the hydration shell and the mutual hydrodynamic interactions of the protein lysozyme under conditions supportive of protein crystallization. After accounting for the effects of protein interaction and for changes in solution viscosity on protein diffusivity, protein hydrodynamic radii were determined with +/-0.25 A resolution. No changes to the extent of lysozyme hydration were discernible for all salt-types, at any salt concentration and for temperatures between 15-40 degrees C. Combining static with dynamic light scattering, we also investigated salt-induced changes to the hydrodynamic protein interactions. With increased salt concentration, hydrodynamic interactions changed from attractive to repulsive, i.e., in exact opposition to salt-induced changes in direct protein interactions. This anti-correlation was independent of solution temperature or salt identity. Although salt-specific effects on direct protein interactions were prominent, neither protein hydration nor solvent-mediated hydrodynamic interactions displayed any obvious salt-specific effects. We infer that the protein hydration shell is more resistant than bulk water to changes in its local structure by either chaotropic or kosmotropic ions.
Subject(s)
Muramidase/chemistry , Muramidase/metabolism , Water/chemistry , Water/metabolism , Ions/pharmacology , Light , Protein Binding/drug effects , Salts/pharmacology , Scattering, Radiation , Solutions , Solvents/pharmacology , ViscosityABSTRACT
The mechanisms linking deposits of insoluble amyloid fibrils to the debilitating neuronal cell death characteristic of neurodegenerative diseases remain enigmatic. Recent findings implicate transiently formed intermediates of mature amyloid fibrils as the principal toxic agent. Hence, determining which intermediate aggregates represent on-pathway precursors or off-pathway side branches is critical for understanding amyloid self-assembly, and for devising therapeutic approaches targeting relevant toxic species. We examined amyloid fibril self-assembly in acidic solutions, using the model protein hen egg-white lysozyme. Combining in situ dynamic light scattering with calibrated atomic-force microscopy, we monitored the nucleation and growth kinetics of multiple transient aggregate species, and characterized both their morphologies and physical dimensions. Upon incubation at elevated temperatures, uniformly sized oligomers formed at a constant rate. After a lag period of several hours, protofibrils spontaneously nucleated. The nucleation kinetics of protofibrils and the tight match of their widths and heights with those of oligomers imply that protofibrils both nucleated and grew via oligomer fusion. After reaching several hundred nanometers in length, protofibrils assembled into mature fibrils. Overall, the amyloid fibril assembly of lysozyme followed a strict hierarchical aggregation pathway, with amyloid monomers, oligomers, and protofibrils forming on-pathway intermediates for assembly into successively more complex structures.
Subject(s)
Amyloid/chemistry , Muramidase/metabolism , Amyloid/metabolism , Amyloid/ultrastructure , Animals , Chickens , Kinetics , Light , Microscopy, Atomic Force , Protein Multimerization , Scattering, Radiation , TemperatureABSTRACT
Assembly and deposition of insoluble amyloid fibrils with a distinctive cross-ß-sheet structure is the molecular hallmark of amyloidogenic diseases affecting the central nervous system as well as non-neuropathic amyloidosis. Amyloidogenic proteins form aggregates via kinetic pathways dictated by initial solution conditions. Often, early stage, cytotoxic, small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs). Growing experimental evidence suggests that soluble gOs are off-pathway aggregates that do not directly convert into the final stage RFs. Yet, the kinetics of RFs aggregation under conditions that either promote or suppress the growth of gOs remain incompletely understood. Here we present a self-assembly model for amyloid fibril formation in the presence and absence of early stage off-pathway aggregates, driven by our experimental results on hen egg white lysozyme (HewL) and beta amyloid (Aß) aggregation. The model reproduces a range of experimental observations including the sharp boundary in the protein concentration above which the self-assembly of gOs occurs. This is possible when both primary and secondary RFs nucleation rates are allowed to have a nonlinear dependence on initial protein concentration, hinting toward more complex prenucleation and RFs assembly scenarios. Moreover, analysis of RFs lag period in the presence and absence of gOs indicates that these off-pathway aggregates have an inhibitory effect on RFs nucleation. Finally, we incorporate the effect of an Aß binding protein on the aggregation process in the model that allows us to identify the most suitable solution conditions for suppressing gOs and RFs formation.
Subject(s)
Amyloid beta-Peptides/chemistry , Muramidase/chemistry , Animals , Chickens , Models, Molecular , SolubilityABSTRACT
Assembly of amyloid fibrils and small globular oligomers is associated with a significant number of human disorders that include Alzheimer's disease, senile systemic amyloidosis, and type II diabetes. Recent findings implicate small amyloid oligomers as the dominant aggregate species mediating the toxic effects in these disorders. However, validation of this hypothesis has been hampered by the dearth of experimental techniques to detect, quantify, and discriminate oligomeric intermediates from late-stage fibrils, in vitro and in vivo. We have shown that the onset of significant oligomer formation is associated with a transition in thioflavin T kinetics from sigmoidal to biphasic kinetics. Here we showed that this transition can be exploited for screening fluorophores for preferential responses to oligomer over fibril formation. This assay identified crystal violet as a strongly selective oligomer-indicator dye for lysozyme. Simultaneous recordings of amyloid kinetics with thioflavin T and crystal violet enabled us to separate the combined signals into their underlying oligomeric and fibrillar components. We provided further evidence that this screening assay could be extended to amyloid-ß peptides under physiological conditions. Identification of oligomer-selective dyes not only holds the promise of biomedical applications but provides new approaches for unraveling the mechanisms underlying oligomer versus fibril formation in amyloid assembly.
Subject(s)
Amyloid/chemistry , Benzothiazoles/chemistry , Fluorescent Dyes/chemistry , Gentian Violet/chemistry , Amyloid/chemical synthesis , Humans , KineticsABSTRACT
Voltage-sensitive dyes (VSDs) provide a spatially resolved optical read-out of electrical signals in excitable tissues. Several common fluorescent VSDs display electrochromic shifts of their emission spectra, making them suitable candidates for ratiometric measurements of transmembrane voltages. These advantages of VSDs are tempered by tissue-specific shifts to their fluorescence emission. In addition, the optimal electrochromic dye response occurs in wavelength bands distinct from the dye's maximal resting emission. This "action spectrum" can undergo tissue-specific shifts as well. We have developed a technique for in situ measurements of the action spectra of VSDs in intact excitable tissues. Fluorescence emission spectra of VSDs during action-potential depolarization were obtained within a single sweep of a spectrophotometer equipped with a change-coupled device (CCD) array detector. To resolve the subtle electrochromic shifts in voltage-induced dye emission, fluorescence emission spectra measured right before and during field-induced action-potential depolarization were averaged over about 100 trials. Removing white-noise contributions from the spectrometer's CCD detector/amplifier via low-pass filtering in Fourier space, the action spectra of all dyes could be readily determined.
Subject(s)
Action Potentials/physiology , Fluorescent Dyes , Neurons/physiology , Pituitary Gland/physiology , Spectrometry, Fluorescence/methods , Animals , Female , Mice , Reproducibility of Results , Sensitivity and SpecificityABSTRACT
Assembly of rigid amyloid fibrils with their characteristic cross-ß sheet structure is a molecular signature of numerous neurodegenerative and non-neuropathic disorders. Frequently large populations of small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs), and have been implicated in amyloid toxicity. Yet our understanding of the origin of these metastable oligomers, their role as on-pathway precursors or off-pathway competitors, and their effects on the self-assembly of amyloid fibrils remains incomplete. Using two unrelated amyloid proteins, amyloid-ß and lysozyme, we find that gO/CF formation, analogous to micelle formation by surfactants, is delineated by a "critical oligomer concentration" (COC). Below this COC, fibril assembly replicates the sigmoidal kinetics of nucleated polymerization. Upon crossing the COC, assembly kinetics becomes biphasic with gO/CF formation responsible for the lag-free initial phase, followed by a second upswing dominated by RF nucleation and growth. RF lag periods below the COC, as expected, decrease as a power law in monomer concentration. Surprisingly, the build-up of gO/CFs above the COC causes a progressive increase in RF lag periods. Our results suggest that metastable gO/CFs are off-pathway from RF formation, confined by a condition-dependent COC that is distinct from RF solubility, underlie a transition from sigmoidal to biphasic assembly kinetics and, most importantly, not only compete with RFs for the shared monomeric growth substrate but actively inhibit their nucleation and growth.