Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Comput Chem ; 43(12): 879-887, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35322441

ABSTRACT

The ThermoML Archive is a subset of Thermodynamics Research Center (TRC) data holdings corresponding to cooperation between NIST TRC and five journals: Journal of Chemical Engineering and Data (ISSN: 1520-5134), The Journal of Chemical Thermodynamics (ISSN: 1096-3626), Fluid Phase Equilibria (ISSN: 0378-3812), Thermochimica Acta (ISSN: 0040-6031), and International Journal of Thermophysics (ISSN: 1572-9567). Data from initial cooperation (around 2003) through the 2019 calendar year are included. The archive has undergone a major update with the goal of improving the FAIRness and user experience of the data provided by the service. The web application provides comprehensive property browsing and searching capabilities; searching relies on a RESTful API provided by the Cordra software for managing digital objects. JSON files with a schema derived from ThermoML are provided as an additional serialization to lower the barrier to programmatic consumption of the information, for stakeholders who may have a preference of JSON over XML. The ThermoML and JSON files for all available entries can be downloaded from data.nist.gov (https://data.nist.gov/od/id/mds2-2422).


Subject(s)
Software
2.
J Phys Chem B ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253766

ABSTRACT

The balance between ion solvation and ion pairing in aqueous solutions modulates chemical and physical processes from catalysis to protein folding. Yet, despite more than a century of investigation, experimental determination of the distribution of ion-solvation and ion-pairing states remains elusive, even for archetypal systems like aqueous alkali halides. Here, we combine nuclear magnetic resonance (NMR) spectroscopy and multiscale modeling to disentangle ion-solvent interactions from ion pairing in aqueous sodium fluoride solutions. We have developed a high-accuracy method to collect experimental NMR resonance frequencies for both ions as functions of temperature and concentration. Comparison of these data with resonance frequencies for nonassociating salts allows us to differentiate the influence of solvation and ion pairing on NMR spectra. These high-quality experimental NMR data are used to validate our modeling framework comprising polarizable force field molecular dynamics (MD) simulations and quantum chemical calculations of NMR resonance frequencies. Our experimental and theoretical resonance frequency shifts agree over a wide range of temperatures and concentrations. Structural analysis reveals how both trends are dominated by interactions with water molecules. For the more sensitive 19F nucleus, the NMR resonance frequency decreases as hydrogen bonds between fluoride and water molecules are reduced in number with increased temperature and molality. Through a detailed analysis of the theoretical NMR resonance frequencies for both ions, we show that NMR spectroscopy can distinguish both contact ion pairs and single-solvent-separated ion pairs from free ions. This quantitative framework can be applied directly to other systems.

3.
J Chem Inf Model ; 53(12): 3418-30, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24245860

ABSTRACT

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present article describes the background and implementation for new additions in latest release of TDE. Advances are in the areas of program architecture and quality improvement for automatic property evaluations, particularly for pure compounds. It is shown that selection of appropriate program architecture supports improvement of the quality of the on-demand property evaluations through application of a readily extensible collection of constraints. The basis and implementation for other enhancements to TDE are described briefly. Other enhancements include the following: (1) implementation of model-validity enforcement for specific equations that can provide unphysical results if unconstrained, (2) newly refined group-contribution parameters for estimation of enthalpies of formation for pure compounds containing carbon, hydrogen, and oxygen, (3) implementation of an enhanced group-contribution method (NIST-Modified UNIFAC) in TDE for improved estimation of phase-equilibrium properties for binary mixtures, (4) tools for mutual validation of ideal-gas properties derived through statistical calculations and those derived independently through combination of experimental thermodynamic results, (5) improvements in program reliability and function that stem directly from the recent redesign of the TRC-SOURCE Data Archival System for experimental property values, and (6) implementation of the Peng-Robinson equation of state for binary mixtures, which allows for critical evaluation of mixtures involving supercritical components. Planned future developments are summarized.


Subject(s)
Hydrocarbons/chemistry , Models, Chemical , Software , Algorithms , Computer Simulation , Kinetics , Phase Transition , Thermodynamics
4.
J Chem Inf Model ; 53(1): 249-66, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23205711

ABSTRACT

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for material streams involving any number of chemical components with assessment of uncertainties. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity-coefficient models for phase equilibrium properties (vapor-liquid equilibrium). Multicomponent models are based on those for the pure-components and all binary subsystems evaluated on demand through the TDE software algorithms. Models are described in detail, and extensions to the class structure of the program are provided. Novel program features, such as ready identification of key measurements for subsystems that can reduce the combined uncertainty for a particular stream property, are described. In addition, new product-design features are described for selection of solvents for optimized crystal dissolution, separation of binary crystal mixtures, and solute extraction from a single-component solvent. Planned future developments are summarized.


Subject(s)
Physical Phenomena , Software , Temperature , Algorithms , Databases, Pharmaceutical , Drug Design , Reproducibility of Results , Solubility , Solvents/chemistry , Uncertainty , User-Computer Interface
5.
J Chem Inf Model ; 52(1): 260-76, 2012 Jan 23.
Article in English | MEDLINE | ID: mdl-22107452

ABSTRACT

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for ternary chemical systems. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity coefficient models for phase equilibrium properties (vapor-liquid and liquid-liquid equilibrium). Constructed ternary models are based on those for the three pure component and three binary subsystems evaluated on demand through the TDE software algorithms. All models are described in detail, and extensions to the class structure of the program are provided. Reliable evaluation of properties for the binary subsystems is essential for successful property evaluations for ternary systems, and algorithms are described to aid appropriate parameter selection and fitting for the implemented activity coefficient models (NRTL, Wilson, Van Laar, Redlich-Kister, and UNIQUAC). Two activity coefficient models based on group contributions (original UNIFAC and NIST-KT-UNIFAC) are also implemented. Novel features of the user interface are shown, and directions for future enhancements are outlined.


Subject(s)
Complex Mixtures/chemistry , Models, Chemical , Software , User-Computer Interface , Algorithms , Ammonia/chemistry , Gases/chemistry , Solvents/chemistry , Surface Tension , Thermodynamics , Viscosity , Water/chemistry
6.
J Chem Inf Model ; 51(6): 1506-12, 2011 Jun 27.
Article in English | MEDLINE | ID: mdl-21517125

ABSTRACT

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe the development of a World Wide Web-based interface to TDE evaluations of pure compound properties, including critical properties, phase boundary equilibria (vapor pressures, sublimation pressures, and crystal-liquid boundary pressures), densities, energetic properties, and transport properties. This includes development of a system for caching evaluation results to maintain high availability and an advanced window-in-window interface that leverages modern Web-browser technologies. Challenges associated with bringing the principal advantages of the TDE technology to the Web are described, as are compromises to maintain general access and speed of interaction while remaining true to the tenets of dynamic data evaluation. Future extensions of the interface and associated Web-services are outlined.

7.
J Chem Inf Model ; 51(1): 181-94, 2011 Jan 24.
Article in English | MEDLINE | ID: mdl-21166466

ABSTRACT

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.


Subject(s)
Drug Design , Research Design , Software , Algorithms , Physical Phenomena , Reproducibility of Results , Temperature , Volatilization
8.
Phys Chem Chem Phys ; 12(45): 14994-5000, 2010 Dec 07.
Article in English | MEDLINE | ID: mdl-20953438

ABSTRACT

In this work the molar enthalpy of formation of the ionic liquid 1-ethyl-3-methylimidazolium dicyanoamide in the gaseous phase [C(2)MIM][N(CN)(2)] was measured by means of combustion calorimetry and enthalpy of vaporization using transpiration. Available, but scarce, primary experimental results on enthalpies of formation of imidazolium based ionic liquids with the cation [C(n)MIM] (where n = 2 and 4) and anions [N(CN)(2)], [NO(3)] and [NTf(2)] were collected and checked for consistency using a group additivity procedure. First-principles calculations of the enthalpies of formation in the gaseous phase for the ionic liquids with the common cation [C(n)MIM] (where n = 2 and 4) and with the anions [N(CN)(2)], [NO(3)], [NTf(2)], [Cl], [BF(4)] and [PF(6)] have been performed using the G3MP2 theory. It has been established that the gaseous phase enthalpies of formation of these ionic liquids obey the group additivity rules.

9.
J Chem Inf Model ; 49(12): 2883-96, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20035558

ABSTRACT

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. This paper describes the first application of this concept to the evaluation of thermodynamic properties for chemical reactions. Reaction properties evaluated are the enthalpies, entropies, Gibbs energies, and thermodynamic equilibrium constants. Details of key considerations in the critical evaluation of enthalpies of formation and of standard entropies for organic compounds are discussed in relation to their application in the calculation of reaction properties. Extensions to the class structure of the program are described that allow close linkage between the derived reaction properties and the underlying pure-component properties. Derivation of pure-component enthalpies of formation and of standard entropies through the use of directly measured reaction properties (enthalpies of reaction and equilibrium constants) is described. Directions for future enhancements are outlined.

10.
J Colloid Interface Sci ; 533: 136-143, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30165295

ABSTRACT

HYPOTHESIS/OBJECTIVE: We examine the time dependent viscometric behavior of a well-defined system of gelling colloidal silica and how this behavior may be understood from a simple theoretical model which incorporates the microstructure of the gel. The ultra-small angle neutron scattering (USANS) technique is used to interrogate structure during the gelation process. EXPERIMENTS: The investigations focused on a system where both particles and interactions are well-defined: 7 nm silica particle acid-treated aqueous solution subjected to a constant applied shear in Couette geometry. Ultra-small angle neutron scattering (USANS) time-dependent scattering intensities were measured at wave vectors, q, in the range, 1.0 × 10-3 ≤ q/nm ≤ 7.3 × 10-2 coupled with viscosity data recorded simultaneously. The interpretation of the USANS scattering data is reliant on an isotropic sample. This assumption has been investigated, over a limited range of scattering vectors, using more suitable small angle neutron scattering (SANS) instrumentation with a restricted q-range. FINDINGS: The first recorded direct kinetic measurements of the micron-scale structure in a gelling system. A critical micro-structural feature of the intensity-viscosity time behavior of a gelling colloid subjected to a shear is the cluster size. A viscosity/intensity coupling observed at the time of a viscosity maximum that corresponds to a time-dependent critical stress and speculated to be independent of the wave vector over a wide q-range.

11.
J Res Natl Inst Stand Technol ; 113(4): 209-20, 2008.
Article in English | MEDLINE | ID: mdl-27096122

ABSTRACT

It has long been understood that availability of thermophysical and thermochemical property data is vital to scientific research and industrial design. For over 65 years, the Thermodynamics Research Center (TRC) has been publishing tables of critically evaluated data covering physical and thermodynamic properties of pure compounds, TRC Tables-Hydrocarbons and TRC Tables-Non-Hydrocarbons. Over their long history, the TRC Tables have always been valued as a reputable source of evaluated thermophysical and thermodynamic data. To facilitate more flexible, convenient, and up-to-date access to the data, here, we present the release of the on-line version of the TRC tables, Web Thermo Tables (WTT). Presently, WTT contains data for 7838 compounds and over 950,000 evaluated data points. The tabulated information includes critical properties, vapor pressures and boiling temperatures, phase transition properties, volumetric properties, heat capacities and derived properties, transport properties, reaction state-change properties, as well as index of refraction, surface tension, and speed of sound. Various search options and data plotting capabilities are provided via the Web interface. WTT are distributed through the NIST Standard Reference Data Program [1].

12.
Article in English | MEDLINE | ID: mdl-28736460

ABSTRACT

A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to T → 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ργ /T the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO2, and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation.

13.
J Chem Inf Model ; 49(2): 503-17, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19434848

ABSTRACT

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for binary chemical systems. Five activity-coefficient models have been implemented for representation of phase-equilibrium data (vapor-liquid, liquid-liquid, and solid-liquid equilibrium): NRTL, UNIQUAC, Van Laar, Margules/Redlich-Kister, and Wilson. Implementation of these models in TDE is fully described. Properties modeled individually are densities, surface tensions, critical temperatures, critical pressures, excess enthalpies, and the transport properties-viscosity and thermal conductivity. Extensions to the class structure of the program are described with emphasis on special features allowing close linkage between mixture and pure-component properties required for implementation of the models. Details of gas-phase models used in conjunction with the activity-coefficient models are shown. Initial implementation of the dynamic data evaluation concept for reactions is demonstrated with evaluation of enthalpies of formation for compounds containing carbon, hydrogen, oxygen, and nitrogen. Directions for future enhancements are outlined.

14.
J Chem Inf Model ; 47(4): 1713-25, 2007.
Article in English | MEDLINE | ID: mdl-17518462

ABSTRACT

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. The present paper describes two major software enhancements to TDE: (1) generation of equation of state (EOS) representations on demand and (2) establishment of a dynamically updated experimental data resource for use in the critical evaluation process. Four EOS formulations have been implemented in TDE for on-demand evaluation: the volume translated Peng-Robinson, modified Sanchez-Lacombe, PC-SAFT, and Span Wagner EOS. The equations are fully described with their general application. The class structure of the program is described with particular emphasis on special features required to implement an equation, such as an EOS, that represents multiple properties simultaneously. Full implementation of the dynamic data evaluation concept requires that evaluations be based on an up-to-date "body of knowledge" or, in the case of TDE, an up-to-date collection of experimental results. A method to provide updates through the World Wide Web is described that meets the challenges of maintenance of data integrity with full traceability. Directions for future enhancements are outlined.

SELECTION OF CITATIONS
SEARCH DETAIL