Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Anal Bioanal Chem ; 415(23): 5809-5817, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37490153

ABSTRACT

Here, we present a method developed for the analysis of spatial distributions of morphine in mouse brain tissue using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to a Q Exactive Plus mass spectrometer. The method is also capable of evaluating spatial distributions of the antiretroviral drug abacavir. To maximize sensitivity to morphine, we analyze various Orbitrap mass spectrometry acquisition modes utilizing signal abundance and frequency of detection as evaluation criteria. We demonstrate detection of morphine in mouse brain and establish that the selected ion monitoring mode provides 2.5 times higher sensitivity than the full-scan mode. We find that distributions of morphine and abacavir are highly correlated with the Pearson correlation coefficient R = 0.87. Calibration showed that instrument response is linear up to 40 pg/mm2 (3.8 µg/g of tissue).


Subject(s)
Morphine , Spectrometry, Mass, Electrospray Ionization , Mice , Animals , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Brain , Lasers
2.
Antimicrob Agents Chemother ; 66(4): e0217621, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266824

ABSTRACT

Most measures of adherence to antiretroviral therapy require a blood sample, and none capture longitudinal daily adherence. A new noninvasive method for measuring daily adherence to antiretroviral regimens containing emtricitabine (FTC) was developed for intact hair strands using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI). A directly observed therapy study of daily and intermittent (3, 1, and 0 doses/week) FTC dosing (n = 12) benchmarked adherence in hair, revealing distinct accumulation patterns and median FTC signal abundance (1,702, 495, 352, and 0, respectively) with each dosing frequency. A threshold value of FTCsignal abundance of 500 differentiated daily dosing from 3 or fewer doses/week (specificity, 100%; sensitivity, 100% over 30 days and 80% over 60 days). Using these criteria, daily FTC hair adherence was classified in young men (n = 8) who have sex with men (YMSM) engaged in or initiating preexposure prophylaxis (PrEP). Four types of adherence profiles were observed in sequential 30-day periods: consistently high, occasional missed doses, improvement following study initiation, and intermittent. Discrete days of nonadherence were identified across the 60-day window, with the average number of consecutive days classified as nonadherent increasing across the four profile types (1, 2, 19, and 58 days, respectively). Additionally, cumulative FTC response in hair (60-day average) significantly correlated with dried blood spot tenofovir diphosphate concentrations collected simultaneously (rs = 0.79, P = 0.03). Based on these data, IR-MALDESI FTC adherence classification in hair strands can better delineate short-term changes in adherence behaviors over a long retrospective window, offering great potential for noninvasive adherence monitoring and quick supportive interventions.


Subject(s)
Anti-HIV Agents , HIV Infections , Pre-Exposure Prophylaxis , Sexual and Gender Minorities , Anti-HIV Agents/therapeutic use , Emtricitabine/therapeutic use , HIV Infections/drug therapy , HIV Infections/prevention & control , Hair/chemistry , Homosexuality, Male , Humans , Male , Mass Spectrometry , Medication Adherence , Pre-Exposure Prophylaxis/methods , Retrospective Studies , Tenofovir/therapeutic use
3.
Article in English | MEDLINE | ID: mdl-33782003

ABSTRACT

Human immunodeficiency virus (HIV) persistence in tissue reservoirs is a major barrier to HIV cure. While antiretrovirals (ARVs) suppress viral replication, antiretroviral therapy (ART) interruption results in rapid rebound viremia that may originate from lymphoid tissues. To understand the relationship between anatomic distribution of ARV exposure and viral expression in lymph nodes, we performed mass spectrometry imaging (MSI) of 6 ARVs, RNAscope in situ hybridization for viral RNA (vRNA), and immunohistochemistry of collagen in mesenteric lymph nodes from 8 uninfected and 10 reverse transcriptase simian/human immunodeficiency virus (RT-SHIV)-infected rhesus macaques dosed to steady state with combination ART. MATLAB-based quantitative imaging analysis was used to evaluate spatial and pharmacological relationships between these ARVs, viral RNA (both vRNA+ cells and follicular dendritic cell [FDC]-bound virions), and collagen deposition. Using MSI, 31% of mesenteric lymph node tissue area was found to be not covered by any ARV. Additionally, 28% of FDC-trapped virions and 21% of infected cells were not exposed to any detected ARV. Of the 69% of tissue area that was covered by cumulative ART exposure, nearly 100% of concentrations were greater than in vitro 50% inhibitory concentration (IC50) values; however, 52% of total tissue coverage was from only one ARV, primarily maraviroc. Collagen covered ∼35% of tissue area but did not influence ARV distribution heterogeneity. Our findings are consistent with our hypothesis that ARV distribution, in addition to total-tissue drug concentration, must be considered when evaluating viral persistence in lymph nodes and other reservoir tissues.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Collagen , HIV , Lymph Nodes , Macaca mulatta , RNA-Directed DNA Polymerase , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/genetics , Viral Load , Virus Replication
4.
Analyst ; 145(13): 4540-4550, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32420552

ABSTRACT

Analysis of drugs in hair by mass spectrometry imaging (MSI) has great potential as an objective, long-term measure of medication adherence. However, the fidelity of the chemical record in hair may be compromised by any cosmetic hair treatments. Here, we investigate infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI response to multiple antiretrovirals (ARVs) in cosmetically treated hair. Hair strands from patients on different ARV regimens were mechanically treated with dye, bleach, and relaxer. The treatments had little or no effect relative to untreated controls for cobicistat, abacavir, dolutegravir, maraviroc, efavirenz, and darunavir, but all three treatments removed emtricitabine (FTC) to undetectable levels from patient hair strands. We also evaluated hair strands by IR-MALDESI MSI from 8 patients on FTC-based regimens who reported a range of hair treatments at varying recency prior to hair collection. While FTC was undetectable in the treated portion of these hair strands, ARVs coadministered with FTC remained detectable in hair strands after treatment. We conclude that IR-MALDESI MSI can be used when measuring adherence to ARV therapy, provided that ARVs other than FTC are targeted in people using hair treatments.


Subject(s)
Antiviral Agents/analysis , Hair Analysis/methods , Hair/chemistry , Antiviral Agents/chemistry , Hair Bleaching Agents/chemistry , Hair Dyes/chemistry , Humans , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
5.
Anal Bioanal Chem ; 410(18): 4237-4245, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29704030

ABSTRACT

Mass spectrometry has proven to be a useful technique for rapid identification of bacterial cells. Among various ionization techniques in mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) has been commonly used for the identification of bacterial cells. Recently, MALDI mass spectrometry has also been utilized to distinguish cellular responses. Ambient ionization techniques do support whole bacterial cell analysis, which include desorption electrospray ionization (DESI). Nanospray DESI (nDESI) is a new variant of DESI, and its application to whole-cell mass spectrometry is limited. In this project, the use of nDESI mass spectrometry to measure probiotic Lactobacillus reuteri (LR) cells is explored. A unique and reproducible mass spectral pattern of untreated LR cells was obtained by using 50% methanol/water as nDESI solvent. The use of nDESI mass spectrometry is further extended to distinguish untreated LR cells from treated LR cells that have been exposed to low pH. These findings demonstrate the feasibility of using nDESI in whole-cell mass spectrometry. Graphical abstract ᅟ.


Subject(s)
Limosilactobacillus reuteri/isolation & purification , Probiotics/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods , Hydrogen-Ion Concentration , Nanotechnology , Reproducibility of Results , Solvents , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
6.
Noncoding RNA ; 2(4)2016 Dec 02.
Article in English | MEDLINE | ID: mdl-29657271

ABSTRACT

MicroRNA (miR) are short non-coding RNAs known to post-transcriptionally regulate gene expression, and have been reported as biomarkers for various diseases. miR have also been served as potential drug targets. The identity, functions and detection of a specific miR are determined by its RNA sequence, whose composition is made up of only 4 canonical ribonucleotides. Hence, among over two thousand human miR, their nucleotide compositions are expected to be similar but the extent of similarity has not been reported. In this study, the sequences of mature human miR were downloaded from miRBase, and collated using different tools to determine and compare their nucleotide compositions and sequences. 55% of all human miR were found to be structural isomers. The structural isomers of miR (SimiR) are defined as having the same size and identical nucleotide composition. A number of SimiR were also found to have high sequence similarities. To investigate the extent of SimiR in biological samples, three disease models were chosen, and disease-associated miR were identified from miR2Disease. Among the disease models, as high as 73% of miR were found to be SimiR. This report provides the missing information about human miR and highlights the challenges on the detection of SimiR.

7.
Environ Toxicol Chem ; 31(8): 1823-30, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22610786

ABSTRACT

Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00 g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the "metal-free" CNTs contributed to the toxicity.


Subject(s)
Invertebrates/drug effects , Nanotubes, Carbon/toxicity , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Aquatic Organisms/drug effects , Chironomidae/drug effects , Fresh Water/chemistry , Geologic Sediments/chemistry , Metals/chemistry , Metals/toxicity , Nanotubes, Carbon/ultrastructure , Nickel/chemistry , Nickel/toxicity , Oligochaeta/drug effects , Toxicity Tests, Chronic , Water Pollutants, Chemical/chemistry
8.
Environ Toxicol Chem ; 30(4): 981-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21305577

ABSTRACT

Silicon carbide nanowires (SiCNW) are insoluble in water. When released into an aquatic environment, SiCNW would likely accumulate in sediment. The objective of this study was to assess the toxicity of SiCNW to four freshwater sediment-dwelling organisms: amphipods (Hyalella azteca), midges (Chironomus dilutus), oligochaetes (Lumbriculus variegatus), and mussels (Lampsilis siliquoidea). Amphipods were exposed to either sonicated or nonsonicated SiCNW in water (1.0 g/L) for 48 h. Midges, mussels, and oligochaetes were exposed only to sonicated SiCNW in water for 96 h. In addition, amphipods were exposed to sonicated SiCNW in whole sediment for 10 d (44% SiCNW on dry wt basis). Mean 48-h survival of amphipods exposed to nonsonicated SiCNW in water was not significantly different from the control, whereas mean survival of amphipods exposed to sonicated SiCNW in two 48-h exposures (0 or 15% survival) was significantly different from the control (90 or 98% survival). In contrast, no effect of sonicated SiCNW was observed on survival of midges, mussels, or oligochaetes. Survival of amphipods was not significantly reduced in 10-d exposures to sonicated SiCNW either mixed in the sediment or layered on the sediment surface. However, significant reduction in amphipod biomass was observed with the SiCNW either mixed in sediment or layered on the sediment surface, and the reduction was more pronounced for SiCNW layered on the sediment. These results indicated that, under the experimental conditions, nonsonicated SiCNW in water were not acutely toxic to amphipods, sonicated SiCNW in water were acutely toxic to the amphipods, but not to other organisms tested, and sonicated SiCNW in sediment affected the growth but not the survival of amphipods.


Subject(s)
Carbon Compounds, Inorganic/toxicity , Invertebrates/drug effects , Nanowires/toxicity , Silicon Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Geologic Sediments/chemistry , Nanowires/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL