Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Negl Trop Dis ; 17(6): e0011285, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37327220

ABSTRACT

Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, presenting high rates of morbidity and mortality in low- and middle-income countries. The H58 haplotype shows high levels of antimicrobial resistance (AMR) and is the dominant S. Typhi haplotype in endemic areas of Asia and East sub-Saharan Africa. The situation in Rwanda is currently unknown and therefore to reveal the genetic diversity and AMR of S. Typhi in Rwanda, 25 historical (1984-1985) and 26 recent (2010-2018) isolates from Rwanda were analysed using whole genome sequencing (WGS). WGS was locally implemented using Illumina MiniSeq and web-based analysis tools, thereafter complemented with bioinformatic approaches for more in-depth analyses. Whereas historical S. Typhi isolates were found to be fully susceptible to antimicrobials and show a diversity of genotypes, i.e 2.2.2, 2.5, 3.3.1 and 4.1; the recent isolates showed high AMR rates and were predominantly associated with genotype 4.3.1.2 (H58, 22/26; 84,6%), possibly resulting from a single introduction in Rwanda from South Asia before 2010. We identified practical challenges for the use of WGS in endemic regions, including a high cost for shipment of molecular reagents and lack of high-end computational infrastructure for the analyses, but also identified WGS to be feasible in the studied setting and giving opportunity for synergy with other programs.


Subject(s)
Salmonella typhi , Typhoid Fever , Humans , Salmonella typhi/genetics , Haplotypes , Anti-Bacterial Agents/therapeutic use , Rwanda , Typhoid Fever/epidemiology , Whole Genome Sequencing , Microbial Sensitivity Tests
2.
PLoS Negl Trop Dis ; 16(8): e0009964, 2022 08.
Article in English | MEDLINE | ID: mdl-35921351

ABSTRACT

BACKGROUND: Bovine tuberculosis (bTB) is an endemic disease in Rwanda, but little is known about its prevalence and causative mycobacterial species. The disease causes tremendous losses in livestock and wildlife and remains a significant threat to public health. MATERIALS AND METHODS: A cross-sectional study employing a systematic random sampling of cattle (n = 300) with the collection of retropharyngeal lymph nodes and tonsils (n = 300) irrespective of granulomatous lesions was carried out in six abattoirs to investigate the prevalence and identify mycobacterial species using culture, acid-fast bacteria staining, polymerase chain reaction, and GeneXpert assay. Individual risk factors and the origin of samples were analysed for association with the prevalence. FINDINGS: Of the 300 sample pools, six were collected with visible TB-like lesions. Our findings demonstrated the presence of Mycobacterium tuberculosis complex (MTBC) in 1.7% (5/300) of sampled slaughtered cattle. Mycobacterium bovis was isolated from 1.3% (4/300) animals while one case was caused by a rifampicin-resistant (RR) M. tuberculosis. Non-tuberculous mycobacteria were identified in 12.0% (36/300) of the sampled cattle. There were no significant associations between the prevalence and abattoir category, age, sex, and breeds of slaughtered cattle. CONCLUSIONS: This study is the first in Rwanda to isolate both M. bovis and RR M. tuberculosis in slaughtered cattle indicating that bTB is present in Rwanda with a low prevalence. The isolation of RR M. tuberculosis from cattle indicates possible zooanthroponotic transmission of M. tuberculosis and close human-cattle contact. To protect humans against occupational zoonotic diseases, it is essential to control bTB in cattle and raise the awareness among all occupational groups as well as reinforce biosafety at the farm level and in the abattoirs.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis, Bovine , Abattoirs , Animals , Cattle , Cross-Sectional Studies , Humans , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Prevalence , Rwanda/epidemiology , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/microbiology
3.
Am J Trop Med Hyg ; 105(1): 47-53, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33999845

ABSTRACT

Tuberculosis (TB), including multidrug-resistant (MDR; i.e., resistant to at least rifampicin and isoniazid)/rifampicin-resistant (MDR/RR) TB, is the most important opportunistic infection among people living with HIV (PLHIV). In 2005, Rwanda launched the programmatic management of MDR/RR-TB. The shorter MDR/RR-TB treatment regimen (STR) has been implemented since 2014. We analyzed predictors of MDR/RR-TB mortality, including the effect of using the STR overall and among PLHIV. This retrospective study included data from patients diagnosed with RR-TB in Rwanda between July 2005 and December 2018. Multivariable logistic regression was used to assess predictors of mortality. Of 898 registered MDR/RR-TB patients, 861 (95.9%) were included in this analysis, of whom 360 (41.8%) were HIV coinfected. Overall, 86 (10%) patients died during MDR/RR-TB treatment. Mortality was higher among HIV-coinfected compared with HIV-negative TB patients (13.3% versus 7.6%). Among HIV-coinfected patients, patients aged ≥ 55 years (adjusted odds ratio = 5.89) and those with CD4 count ≤ 100 cells/mm3 (adjusted odds ratio = 3.77) had a higher likelihood of dying. Using either the standardized longer MDR/RR-TB treatment regimen or the STR was not correlated with mortality overall or among PLHIV. The STR was as effective as the long MDR/RR-TB regimen. In conclusion, older age and advanced HIV disease were strong predictors of MDR/RR-TB mortality. Therefore, special care for elderly and HIV-coinfected patients with ≤ 100 CD4 cells/mL might further reduce MDR/RR-TB mortality.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Resistance, Bacterial , HIV Infections/drug therapy , HIV Infections/mortality , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/mortality , Adult , Aged , Aged, 80 and over , Female , Forecasting , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
4.
Ecohealth ; 17(1): 152-159, 2020 03.
Article in English | MEDLINE | ID: mdl-31811597

ABSTRACT

Bats living in close contact with people in Rwanda were tested for evidence of infection with viruses of zoonotic potential. Mucosal swabs from 503 bats representing 17 species were sampled from 2010 to 2014 and screened by consensus PCR for 11 viral families. Samples were negative for all viral families except coronaviruses, which were detected in 27 bats belonging to eight species. Known coronaviruses detected included the betacorona viruses: Kenya bat coronaviruses, Eidolon bat coronavirus, and Bat coronavirus HKU9, as well as an alphacoronavirus, Chaerephon Bat coronavirus. Novel coronaviruses included two betacorona viruses clustering with SARS-CoV, a 2d coronavirus, and an alphacoronavirus.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus/isolation & purification , Animals , Rwanda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL