Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Cell ; 184(13): 3519-3527.e10, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34107286

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations. The kinase domain of LRRK2 is captured in an inactive state, a conformation also adopted by the most common PD-associated mutation, LRRK2G2019S. This conformation serves as a framework for structure-guided design of conformational specific inhibitors. We further determined the structure of COR-mediated LRRK2 dimers and found that single-point mutations at the dimer interface abolished pathogenic filamentation in cells. Overall, our study provides mechanistic insights into physiological and pathological roles of LRRK2 and establishes a structural template for future therapeutic intervention in PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Amino Acid Sequence , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/ultrastructure , Models, Molecular , Protein Domains , Protein Multimerization , Protein Structure, Secondary
2.
Nature ; 625(7994): 393-400, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030725

ABSTRACT

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.


Subject(s)
Eukaryotic Cells , Protein Biosynthesis , RNA, Messenger , Reading Frames , Ribosomes , Anticodon/genetics , Anticodon/metabolism , Codon/genetics , Codon/metabolism , Cryoelectron Microscopy , Eukaryotic Cells/chemistry , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Peptide Elongation Factor 2/antagonists & inhibitors , Peptide Elongation Factor 2/metabolism , Reading Frames/genetics , Ribosomes/chemistry , Ribosomes/metabolism , Ribosomes/ultrastructure , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism
3.
Mol Cell ; 82(24): 4727-4740.e6, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36525956

ABSTRACT

Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing.


Subject(s)
Adenosine Triphosphatases , DNA Cleavage , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Plasmids/genetics , Chromosomes/metabolism , DNA/genetics , Cell Cycle Proteins/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism
4.
Nature ; 617(7959): 200-207, 2023 05.
Article in English | MEDLINE | ID: mdl-37020024

ABSTRACT

In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.


Subject(s)
Bacteria , Protein Biosynthesis , Humans , Bacteria/genetics , Bacteria/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Amino Acyl/metabolism , Single Molecule Imaging , Cryoelectron Microscopy , Ribosomes/genetics , Ribosomes/metabolism
5.
Nature ; 601(7893): 460-464, 2022 01.
Article in English | MEDLINE | ID: mdl-34937942

ABSTRACT

Maintaining a healthy proteome is fundamental for the survival of all organisms1. Integral to this are Hsp90 and Hsp70, molecular chaperones that together facilitate the folding, remodelling and maturation of the many 'client proteins' of Hsp902. The glucocorticoid receptor (GR) is a model client protein that is strictly dependent on Hsp90 and Hsp70 for activity3-7. Chaperoning GR involves a cycle of inactivation by Hsp70; formation of an inactive GR-Hsp90-Hsp70-Hop 'loading' complex; conversion to an active GR-Hsp90-p23 'maturation' complex; and subsequent GR release8. However, to our knowledge, a molecular understanding of this intricate chaperone cycle is lacking for any client protein. Here we report the cryo-electron microscopy structure of the GR-loading complex, in which Hsp70 loads GR onto Hsp90, uncovering the molecular basis of direct coordination by Hsp90 and Hsp70. The structure reveals two Hsp70 proteins, one of which delivers GR and the other scaffolds the Hop cochaperone. Hop interacts with all components of the complex, including GR, and poises Hsp90 for subsequent ATP hydrolysis. GR is partially unfolded and recognized through an extended binding pocket composed of Hsp90, Hsp70 and Hop, revealing the mechanism of GR loading and inactivation. Together with the GR-maturation complex structure9, we present a complete molecular mechanism of chaperone-dependent client remodelling, and establish general principles of client recognition, inhibition, transfer and activation.


Subject(s)
HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Homeodomain Proteins , Protein Folding , Receptors, Glucocorticoid , Cryoelectron Microscopy , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Protein Binding , Receptors, Glucocorticoid/metabolism
6.
Nature ; 600(7887): 153-157, 2021 12.
Article in English | MEDLINE | ID: mdl-34819673

ABSTRACT

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that regulates important functions in the central nervous system1,2. The ALK gene is a hotspot for chromosomal translocation events that result in several fusion proteins that cause a variety of human malignancies3. Somatic and germline gain-of-function mutations in ALK were identified in paediatric neuroblastoma4-7. ALK is composed of an extracellular region (ECR), a single transmembrane helix and an intracellular tyrosine kinase domain8,9. ALK is activated by the binding of ALKAL1 and ALKAL2 ligands10-14 to its ECR, but the lack of structural information for the ALK-ECR or for ALKAL ligands has limited our understanding of ALK activation. Here we used cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography to determine the atomic details of human ALK dimerization and activation by ALKAL1 and ALKAL2. Our data reveal a mechanism of RTK activation that allows dimerization by either dimeric (ALKAL2) or monomeric (ALKAL1) ligands. This mechanism is underpinned by an unusual architecture of the receptor-ligand complex. The ALK-ECR undergoes a pronounced ligand-induced rearrangement and adopts an orientation parallel to the membrane surface. This orientation is further stabilized by an interaction between the ligand and the membrane. Our findings highlight the diversity in RTK oligomerization and activation mechanisms.


Subject(s)
Anaplastic Lymphoma Kinase/chemistry , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/ultrastructure , Binding Sites , Cell Membrane/chemistry , Cell Membrane/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Cytokines/chemistry , Cytokines/metabolism , Cytokines/ultrastructure , Enzyme Activation , Humans , Ligands , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Domains , Protein Multimerization
7.
Nature ; 595(7869): 741-745, 2021 07.
Article in English | MEDLINE | ID: mdl-34234344

ABSTRACT

Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10-3 to 10-5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.


Subject(s)
Peptide Elongation Factor G/metabolism , Protein Biosynthesis , RNA, Transfer, Amino Acyl/genetics , Ribosomes/metabolism , Codon , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , RNA, Messenger/genetics
8.
Mol Cell ; 69(5): 816-827.e4, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29499136

ABSTRACT

Transcriptional pausing by RNA polymerases (RNAPs) is a key mechanism to regulate gene expression in all kingdoms of life and is a prerequisite for transcription termination. The essential bacterial transcription factor NusA stimulates both pausing and termination of transcription, thus playing a central role. Here, we report single-particle electron cryo-microscopy reconstructions of NusA bound to paused E. coli RNAP elongation complexes with and without a pause-enhancing hairpin in the RNA exit channel. The structures reveal four interactions between NusA and RNAP that suggest how NusA stimulates RNA folding, pausing, and termination. An asymmetric translocation intermediate of RNA and DNA converts the active site of the enzyme into an inactive state, providing a structural explanation for the inhibition of catalysis. Comparing RNAP at different stages of pausing provides insights on the dynamic nature of the process and the role of NusA as a regulatory factor.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , Escherichia coli , RNA Folding , RNA, Bacterial , Transcription Termination, Genetic , Transcriptional Elongation Factors , Catalytic Domain , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , RNA, Bacterial/biosynthesis , RNA, Bacterial/chemistry , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism
9.
PLoS Pathog ; 19(4): e1011206, 2023 04.
Article in English | MEDLINE | ID: mdl-37018380

ABSTRACT

Investigation of potential hosts of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is crucial to understanding future risks of spillover and spillback. SARS-CoV-2 has been reported to be transmitted from humans to various animals after requiring relatively few mutations. There is significant interest in describing how the virus interacts with mice as they are well adapted to human environments, are used widely as infection models and can be infected. Structural and binding data of the mouse ACE2 receptor with the Spike protein of newly identified SARS-CoV-2 variants are needed to better understand the impact of immune system evading mutations present in variants of concern (VOC). Previous studies have developed mouse-adapted variants and identified residues critical for binding to heterologous ACE2 receptors. Here we report the cryo-EM structures of mouse ACE2 bound to trimeric Spike ectodomains of four different VOC: Beta, Omicron BA.1, Omicron BA.2.12.1 and Omicron BA.4/5. These variants represent the oldest to the newest variants known to bind the mouse ACE2 receptor. Our high-resolution structural data complemented with bio-layer interferometry (BLI) binding assays reveal a requirement for a combination of mutations in the Spike protein that enable binding to the mouse ACE2 receptor.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cryoelectron Microscopy , Host Specificity , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Mol Cell ; 63(2): 206-217, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27373335

ABSTRACT

mRNA translation initiation in eukaryotes requires the cooperation of a dozen eukaryotic initiation factors (eIFs) forming several complexes, which leads to mRNA attachment to the small ribosomal 40S subunit, mRNA scanning for start codon, and accommodation of initiator tRNA at the 40S P site. eIF3, composed of 13 subunits, 8 core (a, c, e, f, h, l, k, and m) and 5 peripheral (b, d, g, i, and j), plays a central role during this process. Here we report a cryo-electron microscopy structure of a mammalian 48S initiation complex at 5.8 Å resolution. It shows the relocation of subunits eIF3i and eIF3g to the 40S intersubunit face on the GTPase binding site, at a late stage in initiation. On the basis of a previous study, we demonstrate the relocation of eIF3b to the 40S intersubunit face, binding below the eIF2-Met-tRNAi(Met) ternary complex upon mRNA attachment. Our analysis reveals the deep rearrangement of eIF3 and unravels the molecular mechanism underlying eIF3 function in mRNA scanning and timing of ribosomal subunit joining.


Subject(s)
Codon, Initiator , Eukaryotic Initiation Factor-3/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , Animals , Binding Sites , Eukaryotic Initiation Factor-1/chemistry , Eukaryotic Initiation Factor-1/metabolism , Eukaryotic Initiation Factor-2/chemistry , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-3/chemistry , Humans , Models, Molecular , Multiprotein Complexes , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Subunits , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Rabbits , Ribosomes/chemistry , Structure-Activity Relationship , beta-Globins/chemistry , beta-Globins/metabolism
11.
Nature ; 551(7681): 472-477, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29143818

ABSTRACT

Chemical modifications of human ribosomal RNA (rRNA) are introduced during biogenesis and have been implicated in the dysregulation of protein synthesis, as is found in cancer and other diseases. However, their role in this phenomenon is unknown. Here we visualize more than 130 individual rRNA modifications in the three-dimensional structure of the human ribosome, explaining their structural and functional roles. In addition to a small number of universally conserved sites, we identify many eukaryote- or human-specific modifications and unique sites that form an extended shell in comparison to bacterial ribosomes, and which stabilize the RNA. Several of the modifications are associated with the binding sites of three ribosome-targeting antibiotics, or are associated with degenerate states in cancer, such as keto alkylations on nucleotide bases reminiscent of specialized ribosomes. This high-resolution structure of the human 80S ribosome paves the way towards understanding the role of epigenetic rRNA modifications in human diseases and suggests new possibilities for designing selective inhibitors and therapeutic drugs.


Subject(s)
Cryoelectron Microscopy , RNA, Ribosomal/chemistry , RNA, Ribosomal/ultrastructure , Ribosomes/chemistry , Ribosomes/ultrastructure , Binding Sites , Epistasis, Genetic , HeLa Cells , Humans , Ligands , Models, Molecular , RNA Stability , RNA, Ribosomal/biosynthesis , RNA, Ribosomal/classification , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Ribosomes/drug effects , Ribosomes/genetics
12.
Proc Natl Acad Sci U S A ; 117(4): 1988-1993, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31924746

ABSTRACT

Voltage-gated ion channels endow membranes with excitability and the means to propagate action potentials that form the basis of all neuronal signaling. We determined the structure of a voltage-gated sodium channel, two-pore channel 3 (TPC3), which generates ultralong action potentials. TPC3 is distinguished by activation only at extreme membrane depolarization (V50 ∼ +75 mV), in contrast to other TPCs and NaV channels that activate between -20 and 0 mV. We present electrophysiological evidence that TPC3 voltage activation depends only on voltage sensing domain 2 (VSD2) and that each of the three gating arginines in VSD2 reduces the activation threshold. The structure presents a chemical basis for sodium selectivity, and a constricted gate suggests a closed pore consistent with extreme voltage dependence. The structure, confirmed by our electrophysiology, illustrates the configuration of a bona fide resting state voltage sensor, observed without the need for any inhibitory ligand, and independent of any chemical or mutagenic alteration.


Subject(s)
Ion Channel Gating , Sodium/metabolism , Voltage-Gated Sodium Channels/chemistry , Zebrafish Proteins/chemistry , Action Potentials , Cryoelectron Microscopy , HEK293 Cells , Humans , Models, Molecular , Protein Conformation
13.
RNA ; 26(6): 715-723, 2020 06.
Article in English | MEDLINE | ID: mdl-32144191

ABSTRACT

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Subject(s)
Anti-Bacterial Agents/chemistry , Erythromycin/analogs & derivatives , Protein Synthesis Inhibitors/chemistry , Ribosomes/chemistry , Anti-Bacterial Agents/pharmacology , Cryoelectron Microscopy , Erythromycin/chemistry , Erythromycin/pharmacology , Escherichia coli/genetics , Models, Molecular , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , RNA, Ribosomal, 23S/chemistry
14.
Nucleic Acids Res ; 48(5): 2723-2732, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31989172

ABSTRACT

Post-transcriptional ribosomal RNA (rRNA) modifications are present in all organisms, but their exact functional roles and positions are yet to be fully characterized. Modified nucleotides have been implicated in the stabilization of RNA structure and regulation of ribosome biogenesis and protein synthesis. In some instances, rRNA modifications can confer antibiotic resistance. High-resolution ribosome structures are thus necessary for precise determination of modified nucleotides' positions, a task that has previously been accomplished by X-ray crystallography. Here, we present a cryo-electron microscopy (cryo-EM) structure of the Escherichia coli 50S subunit at an average resolution of 2.2 Å as an additional approach for mapping modification sites. Our structure confirms known modifications present in 23S rRNA and additionally allows for localization of Mg2+ ions and their coordinated water molecules. Using our cryo-EM structure as a testbed, we developed a program for assessment of cryo-EM map quality. This program can be easily used on any RNA-containing cryo-EM structure, and an associated Coot plugin allows for visualization of validated modifications, making it highly accessible.


Subject(s)
Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Nucleotides/metabolism , Ribosome Subunits, Large, Bacterial/ultrastructure , Models, Molecular , Peptides/metabolism , Peptidyl Transferases/metabolism , Reproducibility of Results , Solvents , Static Electricity
15.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499022

ABSTRACT

A six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer. The helicase/ATPase rings of eukaryotes and archaea consist of six minichromosome maintenance (MCM) proteins. Prior structural studies have shown that MCM rings bind one encircled strand of DNA in a spiral staircase, suggesting that the ring pulls this strand of DNA through its central pore in a hand-over-hand mechanism where the subunit at the bottom of the staircase dissociates from DNA and re-binds DNA one step above the staircase. With high-resolution cryo-EM, we show that the MCM ring of the archaeal organism Saccharolobus solfataricus binds an encircled DNA strand in two different modes with different numbers of subunits engaged to DNA, illustrating a plausible mechanism for the alternating steps of DNA dissociation and re-association that occur during DNA translocation.


Subject(s)
Archaeal Proteins , DNA Helicases , Sulfolobus solfataricus , Adenosine Triphosphatases/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , DNA Replication , Minichromosome Maintenance Proteins/metabolism , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism , Translocation, Genetic , DNA Helicases/genetics , DNA Helicases/metabolism
16.
EMBO J ; 36(14): 2073-2087, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28645916

ABSTRACT

In bacteria, ribosomal hibernation shuts down translation as a response to stress, through reversible binding of stress-induced proteins to ribosomes. This process typically involves the formation of 100S ribosome dimers. Here, we present the structures of hibernating ribosomes from human pathogen Staphylococcus aureus containing a long variant of the hibernation-promoting factor (SaHPF) that we solved using cryo-electron microscopy. Our reconstructions reveal that the N-terminal domain (NTD) of SaHPF binds to the 30S subunit as observed for shorter variants of HPF in other species. The C-terminal domain (CTD) of SaHPF protrudes out of each ribosome in order to mediate dimerization. Using NMR, we characterized the interactions at the CTD-dimer interface. Secondary interactions are provided by helix 26 of the 16S ribosomal RNA We also show that ribosomes in the 100S particle adopt both rotated and unrotated conformations. Overall, our work illustrates a specific mode of ribosome dimerization by long HPF, a finding that may help improve the selectivity of antimicrobials.


Subject(s)
Bacterial Proteins/metabolism , Dimerization , Ribosomes/metabolism , Ribosomes/ultrastructure , Staphylococcus aureus/metabolism , Staphylococcus aureus/ultrastructure , Cryoelectron Microscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Interaction Mapping , RNA, Ribosomal, 16S/metabolism
17.
Nature ; 520(7549): 640-5, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25901680

ABSTRACT

Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 Å, reaching 2.9 Å resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.


Subject(s)
Cryoelectron Microscopy , Ribosomes/chemistry , Ribosomes/ultrastructure , Binding Sites , Electrons , Humans , Models, Molecular , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism , RNA, Ribosomal/ultrastructure , RNA, Transfer/chemistry , RNA, Transfer/metabolism , RNA, Transfer/ultrastructure , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , Ribosome Subunits/chemistry , Ribosome Subunits/metabolism , Ribosome Subunits/ultrastructure , Ribosomes/metabolism
18.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200244

ABSTRACT

Ribosome biogenesis is a highly coordinated and complex process that requires numerous assembly factors that ensure prompt and flawless maturation of ribosomal subunits. Despite the increasing amount of data collected, the exact role of most assembly factors and mechanistic details of their operation remain unclear, mainly due to the shortage of high-resolution structural information. Here, using cryo-electron microscopy, we characterized 30S ribosomal particles isolated from an Escherichia coli strain with a deleted gene for the RbfA factor. The cryo-EM maps for pre-30S subunits were divided into six classes corresponding to consecutive assembly intermediates: from the particles with a completely unresolved head domain and unfolded central pseudoknot to almost mature 30S subunits with well-resolved body, platform, and head domains and partially distorted helix 44. The structures of two predominant 30S intermediates belonging to most populated classes obtained at 2.7 Å resolutions indicate that RbfA acts at two distinctive 30S assembly stages: early formation of the central pseudoknot including folding of the head, and positioning of helix 44 in the decoding center at a later stage. Additionally, it was shown that the formation of the central pseudoknot may promote stabilization of the head domain, likely through the RbfA-dependent maturation of the neck helix 28. An update to the model of factor-dependent 30S maturation is proposed, suggesting that RfbA is involved in most of the subunit assembly process.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Bacterial/physiology , Ribosomes/metabolism , Binding Sites , Cryoelectron Microscopy/methods , Escherichia coli Proteins/genetics , Models, Molecular , Protein Binding , Ribosomal Proteins/genetics , Ribosome Subunits, Small, Bacterial/ultrastructure , Ribosomes/ultrastructure
19.
J Struct Biol ; 202(3): 191-199, 2018 06.
Article in English | MEDLINE | ID: mdl-29337113

ABSTRACT

A current bottleneck in structure determination of macromolecular complexes by cryo electron microscopy (cryo-EM) is the large amount of data needed to obtain high-resolution 3D reconstructions, including through sorting into different conformations and compositions with advanced image processing. Additionally, it may be difficult to visualize small ligands that bind in sub-stoichiometric levels. Volta phase plates (VPP) introduce a phase shift in the contrast transfer and drastically increase the contrast of the recorded low-dose cryo-EM images while preserving high frequency information. Here we present a comparative study to address the behavior of different data sets during image processing and quantify important parameters during structure refinement. The automated data collection was done from the same human ribosome sample either as a conventional defocus range dataset or with a Volta phase plate close to focus (cfVPP) or with a small defocus (dfVPP). The analysis of image processing parameters shows that dfVPP data behave more robustly during cryo-EM structure refinement because particle alignments, Euler angle assignments and 2D & 3D classifications behave more stably and converge faster. In particular, less particle images are required to reach the same resolution in the 3D reconstructions. Finally, we find that defocus range data collection is also applicable to VPP. This study shows that data processing and cryo-EM map interpretation, including atomic model refinement, are facilitated significantly by performing VPP cryo-EM, which will have an important impact on structural biology.


Subject(s)
Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Macromolecular Substances/chemistry , Data Collection , Humans , Ligands , Macromolecular Substances/ultrastructure , Ribosomes/chemistry , Ribosomes/ultrastructure
20.
Biol Cell ; 109(2): 81-93, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27730650

ABSTRACT

After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo-EM) is now heading off at unprecedented speed towards high-resolution analysis of biological objects of various sizes. This 'revolution in resolution' is happening largely thanks to new developments of new-generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo-EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo-EM in synergy with other methods such as X-ray crystallography, fluorescence imaging or focussed-ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi-scale and multi-resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.


Subject(s)
Cryoelectron Microscopy , Animals , Crystallography, X-Ray , Humans , Macromolecular Substances/ultrastructure , Models, Molecular , Molecular Conformation , Single Molecule Imaging , Tomography
SELECTION OF CITATIONS
SEARCH DETAIL