Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Methods Mol Biol ; 2294: 253-267, 2021.
Article in English | MEDLINE | ID: mdl-33742407

ABSTRACT

Metastasis is the main cause of death for cancer patients, but our ability to improve clinical outcome first requires a better understanding of the dynamics, cellular mechanisms, and kinetics of metastasis. In prostate cancer (PCa), metastatic tumor cells preferentially colonize to bone. However, a lack of applicable mouse models has limited our ability to study this process accurately. Here, we describe a strategy to bypass this limitation: human PCa cells are injected into immunodeficient mice (at tibia, the left ventricle of heart and the iliac artery). Using this novel technique, the metastatic capabilities of these human PCa cells (e.g., colonization and proliferation potential) can be analyzed in bone with an in vivo imaging system.


Subject(s)
Bone Neoplasms/secondary , Disease Models, Animal , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays/methods , Animals , Cells, Cultured , Humans , Male , Mice
2.
J Exp Med ; 217(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32219437

ABSTRACT

Gene dosage is a key defining factor to understand cancer pathogenesis and progression, which requires the development of experimental models that aid better deconstruction of the disease. Here, we model an aggressive form of prostate cancer and show the unconventional association of LKB1 dosage to prostate tumorigenesis. Whereas loss of Lkb1 alone in the murine prostate epithelium was inconsequential for tumorigenesis, its combination with an oncogenic insult, illustrated by Pten heterozygosity, elicited lethal metastatic prostate cancer. Despite the low frequency of LKB1 deletion in patients, this event was significantly enriched in lung metastasis. Modeling the role of LKB1 in cellular systems revealed that the residual activity retained in a reported kinase-dead form, LKB1K78I, was sufficient to hamper tumor aggressiveness and metastatic dissemination. Our data suggest that prostate cells can function normally with low activity of LKB1, whereas its complete absence influences prostate cancer pathogenesis and dissemination.


Subject(s)
Prostatic Neoplasms/enzymology , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Animals , Cell Line, Tumor , Disease Progression , Epithelium/enzymology , Epithelium/pathology , HEK293 Cells , Heterozygote , Humans , Male , Mice, Inbred C57BL , Mice, Nude , Mutant Proteins/metabolism , Neoplasm Metastasis , PTEN Phosphohydrolase/metabolism , Prostate/enzymology , Prostate/pathology , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/metabolism
3.
Oncotarget ; 8(59): 99261-99273, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29245899

ABSTRACT

Cyclin O (encoded by CCNO) is a member of the cyclin family with regulatory functions in ciliogenesis and apoptosis. Homozygous CCNO mutations have been identified in human patients with Reduced Generation of Multiple Motile Cilia (RGMC) and conditional inactivation of Ccno in the mouse recapitulates some of the pathologies associated with the human disease. These include defects in the development of motile cilia and hydrocephalus. To further investigate the functions of Ccno in vivo, we have generated a new mouse model characterized by the constitutive loss of Ccno in all tissues and followed a cohort during ageing. Ccno-/- mice were growth impaired and developed hydrocephalus with high penetrance. In addition, some Ccno+/- mice also developed hydrocephalus and affected Ccno-/- and Ccno+/- mice exhibited additional CNS defects including cortical thinning and hippocampal abnormalities. In addition to the CNS defects, both male and female Ccno-/- mice were infertile and female mice exhibited few motile cilia in the oviduct. Our results further establish CCNO as an important gene for normal development and suggest that heterozygous CCNO mutations could underlie hydrocephalus or diminished fertility in some human patients.

SELECTION OF CITATIONS
SEARCH DETAIL