Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Molecules ; 29(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543031

ABSTRACT

Ipê is a plant of the Bignoniaceae family. Among the compounds extracted from this tree, lapachol is notable because its structural modification allows the production of ß-lapachone, which has anticancer properties. The objective of this work was to test this hypothesis at a cellular level in vitro and assess its potential safety for use. The following tests were performed: MTT cell viability assay, apoptotic index determination, comet assay, and micronucleus test. The results showed that ß-lapachone had a high cytotoxic capacity for all cell lines tested: ACP02 (gastric adenocarcinoma cells), MCF7 (breast carcinoma cells), HCT116 (colon cancer cells) and HEPG2 (hepatocellular carcinoma cells). Regarding genotoxicity, the exposure of cells to sublethal doses of ß-lapachone induced DNA damage (assessed by the comet assay) and nuclear abnormalities, such as nucleoplasmic bridges and nuclear buds (assessed by the micronucleus test). All tested cell lines responded similarly to ß-lapachone, except for ACP02 cells, which were relatively resistant to the cytotoxic effects of the compound in the MTT test. Our results collectively indicate that although ß-lapachone showed antiproliferative activity against cancer cell lines, it also caused harmful effects in these cells, suggesting that the use of ß-lapachone in treating cancer should be carried out with caution.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Naphthoquinones , Humans , Apoptosis , Naphthoquinones/pharmacology , Antineoplastic Agents/pharmacology , DNA Damage
2.
BMC Genomics ; 24(1): 38, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694120

ABSTRACT

BACKGROUND: Chromosomal painting in manatees has clarified questions about the rapid evolution of sirenians within the Paenungulata clade. Further cytogenetic studies in Afrotherian species may provide information about their evolutionary dynamics, revealing important insights into the ancestral karyotype in the clade representatives. The karyotype of Trichechus inunguis (TIN, Amazonian manatee) was investigated by chromosome painting, using probes from Trichechus manatus latirostris (TML, Florida manatee) to analyze the homeologies between these sirenians. RESULTS: A high similarity was found between these species, with 31 homologous segments in TIN, nineteen of which are whole autosomes, besides the X and Y sex chromosomes. Four chromosomes from TML (4, 6, 8, and 9) resulted in two hybridization signals, totaling eight acrocentrics in the TIN karyotype. This study confirmed in TIN the chromosomal associations of Homo sapiens (HSA) shared in Afrotheria, such as the 5/21 synteny, and in the Paenungulata clade with the syntenies HSA 2/3, 8/22, and 18/19, in addition to the absence of HSA 4/8 common in eutherian ancestral karyotype (EAK). CONCLUSIONS: TIN shares more conserved chromosomal signals with the Paenungulata Ancestral Karyotype (APK, 2n = 58) than Procavia capensis (Hyracoidea), Loxodonta africana (Proboscidea) and TML (Sirenia), where TML presents less conserved signals with APK, demonstrating that its karyotype is the most derived among the representatives of Paenungulata. The chromosomal changes that evolved from APK to the T. manatus and T. inunguis karyotypes (7 and 4 changes, respectively) are more substantial within the Trichechus genus compared to other paenungulates. Among these species, T. inunguis presents conserved traits of APK in the American manatee genus. Consequently, the karyotype of T. manatus is more derived than that of T. inunguis.


Subject(s)
Trichechus inunguis , Trichechus manatus , Animals , Humans , Karyotype , Sirenia/genetics , Trichechus/genetics , Trichechus inunguis/genetics , Trichechus manatus/genetics
3.
Int J Mol Sci ; 24(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37762461

ABSTRACT

Ancistrus is a highly diverse neotropical fish genus that exhibits extensive chromosomal variability, encompassing karyotypic morphology, diploid chromosome number (2n = 34-54), and the evolution of various types of sex chromosome systems. Robertsonian rearrangements related to unstable chromosomal sites are here described. Here, the karyotypes of two Ancistrus species were comparatively analyzed using classical cytogenetic techniques, in addition to isolation, cloning, sequencing, molecular characterization, and fluorescence in situ hybridization of repetitive sequences (i.e., 18S and 5S rDNA; U1, U2, and U5 snDNA; and telomere sequences). The species analyzed here have different karyotypes: Ancistrus sp. 1 (2n = 38, XX/XY) and Ancistrus cirrhosus (2n = 34, no heteromorphic sex chromosomes). Comparative mapping showed different organizations for the analyzed repetitive sequences: 18S and U1 sequences occurred in a single site in all populations of the analyzed species, while 5S and U2 sequences could occur in single or multiple sites. A sequencing analysis confirmed the identities of the U1, U2, and U5 snDNA sequences. Additionally, a syntenic condition for U2-U5 snDNA was found in Ancistrus. In a comparative analysis, the sequences of rDNA and U snDNA showed inter- and intraspecific chromosomal diversification. The occurrence of Robertsonian rearrangements and other dispersal mechanisms of repetitive sequences are discussed.


Subject(s)
Catfishes , Animals , Catfishes/genetics , In Situ Hybridization, Fluorescence , Karyotype , Karyotyping , DNA, Ribosomal/genetics
4.
Molecules ; 28(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513210

ABSTRACT

The alkaloids isolated from Zanthoxylum rhoifolium have demonstrated great pharmacological potential; however, the toxic profiles of these extracts and fractions are still not well elucidated. This study evaluated the toxicity of the ethanol extract (EEZR) and neutral (FNZR) and alkaloid (FAZR) fractions. Chemical characterization was performed by chromatographic methods: thin-layer chromatography (TLC) and high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). The cytotoxicity of the samples was evaluated in human hepatocellular carcinoma (HepG2) cells using the cell viability method (MTT) and mutagenicity by the Allium cepa assay (ACA). Alkaloids isolated from the species were selected for toxicity prediction using preADMET and PROTOX. The molecular docking of the topoisomerase II protein (TOPOII) was used to investigate the mechanism of cell damage. In the EEZR, FNZR, and FAZR, the presence of alkaloids was detected in TCL and HPLC-DAD analyses. These samples showed a 50% inhibitory concentration (IC50) greater than 400 µg/mL in HepG2 cells. In ACA, time- and concentration-dependent changes were observed, with a significant reduction in the mitotic index and an increase in chromosomal aberrations for all samples. Nuclear sprouts and a micronucleus of the positive control (PC) were observed at 10 µg/mL and in the FAZR at 30 µg/mL; a chromosomal bridge in FNZR was observed at 105 µg/mL, CP at a concentration of 40 µg/mL, and nuclear bud and mitotic abnormalities in the EEZR were observed at 170 µg/mL. The alkaloids with a benzophenanthridine were selected for the in silico study, as structural alterations demonstrated certain toxic effects. Molecular docking with topo II demonstrated that all alkaloids bind to the protein. In summary, the fractionation of Z. rhoifolium did not interfere with toxicity; it seems that alkaloids with a benzophenanthridine nucleus may be involved in this toxicity.


Subject(s)
Alkaloids , Zanthoxylum , Humans , Plant Extracts/toxicity , Plant Extracts/chemistry , Zanthoxylum/chemistry , Molecular Docking Simulation , Benzophenanthridines , Alkaloids/chemistry , Ethanol
5.
Int J Mol Sci ; 23(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36012447

ABSTRACT

Several species of Tityus (Scorpiones, Buthidae) present multi-chromosomal meiotic associations and failures in the synaptic process, originated from reciprocal translocations. Holocentric chromosomes and achiasmatic meiosis in males are present in all members of this genus. In the present study, we investigated synapse dynamics, transcriptional silencing by γH2AX, and meiotic microtubule association in bivalents and a quadrivalent of the scorpion Tityus maranhensis. Additionally, we performed RT-PCR to verify the expression of mismatch repair enzymes involved in crossing-over formation in Tityus silvestris gonads. The quadrivalent association in T. maranhensis showed delay in the synaptic process and long asynaptic regions during pachytene. In this species, γH2AX was recorded only at the chromosome ends during early stages of prophase I; in metaphase I, bivalents and quadrivalents of T. maranhensis exhibited binding to microtubules along their entire length, while in metaphase II/anaphase II transition, spindle fibers interacted only with telomeric regions. Regarding T. silvestris, genes involved in the recombination process were transcribed in ovaries, testes and embryos, without significant difference between these tissues. The expression of these genes during T. silvestris achiasmatic meiosis is discussed in the present study. The absence of meiotic inactivation by γH2AX and holo/telokinetic behavior of the chromosomes are important factors for the maintenance of the quadrivalent in T. maranhensis and the normal continuation of the meiotic cycle in this species.


Subject(s)
Chromosomes , Scorpions , Animals , Chromosomes/genetics , Male , Meiosis/genetics , Metaphase , Recombination, Genetic , Scorpions/genetics , Telomere
6.
J Appl Toxicol ; 40(8): 1060-1066, 2020 08.
Article in English | MEDLINE | ID: mdl-32150766

ABSTRACT

Andiroba (Carapa guianensis Aubl) is an Amazonian plant whose oil has been widely used in traditional medicine for various purposes, including anti-inflammation. Research reports indicate that the oil can confer antitumor activity due to the presence of fatty acids, which can directly influence cell death mechanisms. Thus, andiroba oil (AO) has gained interest for its potential to be used in antineoplastic therapies. Here, we report an in vitro analysis of the cytotoxic and mutagenic potential of AO in the gastric cancer cell line, ACP02. Cell survival was assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, differential staining with ethidium bromide and acridine orange assessed apoptosis-necrosis, and mutagenesis was assessed by the micronucleus test. The apolar oil was first diluted in 0.1% dimethyl sulfoxide (DMSO) and then further diluted to six concentrations (0.01, 0.1, 1, 10 and 100 µg/mL and 1 mg/mL) in RPMI medium. Controls included RPMI alone (negative control) and 0.1% DMSO diluted in medium (vehicle control). The MTT test showed that AO significantly reduced cell viability (P < .05) only when the highest tested concentration was applied for 48 hours. The apoptosis/necrosis test showed that the highest concentration of AO induced cell death by apoptosis at 24 and 48 hours. There was no statistically significant increase in the frequency of micronuclei. The ability of the AO to decrease the viability of ACP02 cells via apoptosis, without exerting mutagenic effects, suggests that the oil could be useful as an alternative therapeutic agent for primary tumors of stomach cancer.


Subject(s)
Apoptosis/drug effects , Cytotoxicity, Immunologic/drug effects , Cytotoxins/toxicity , Meliaceae/toxicity , Mutagenesis/drug effects , Mutagens/toxicity , Plant Oils/toxicity , Stomach Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Brazil , Cells, Cultured/drug effects , Humans , Meliaceae/chemistry , Plant Oils/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/toxicity
7.
Int J Mol Sci ; 21(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244440

ABSTRACT

Comparative chromosome-painting analysis among highly rearranged karyotypes of Sigmodontinae rodents (Rodentia, Cricetidae) detects conserved syntenic blocks, which are proposed as chromosomal signatures and can be used as phylogenetic markers. In the Akodontini tribe, the molecular topology (Cytb and/or IRBP) shows five low-supported clades (divisions: "Akodon", "Bibimys", "Blarinomys", "Oxymycterus", and "Scapteromys") within two high-supported major clades (clade A: "Akodon", "Bibimys", and "Oxymycterus"; clade B: "Blarinomys" and "Scapteromys"). Here, we examine the chromosomal signatures of the Akodontini tribe by using Hylaeamys megacephalus (HME) probes to study the karyotypes of Oxymycterus amazonicus (2n = 54, FN = 64) and Blarinomys breviceps (2n = 28, FN = 50), and compare these data with those from other taxa investigated using the same set of probes. We strategically employ the chromosomal signatures to elucidate phylogenetic relationships among the Akodontini. When we follow the evolution of chromosomal signature states, we find that the cytogenetic data corroborate the current molecular relationships in clade A nodes. We discuss the distinct events that caused karyotypic variability in the Oxymycterus and Blarinomys genera. In addition, we propose that Blarinomys may constitute a species complex, and that the taxonomy should be revised to better delimit the geographical boundaries and their taxonomic status.


Subject(s)
Karyotype , Phylogeny , Rodentia/classification , Rodentia/genetics , Animals , Biological Evolution , Brazil , Chromosome Painting , Cytogenetics/methods , Geography , Karyotyping , Male , Sigmodontinae/classification , Sigmodontinae/genetics , Synteny
8.
BMC Evol Biol ; 19(1): 184, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601183

ABSTRACT

BACKGROUND: The Neacomys genus is predominantly found in the Amazon region, and belongs to the most diverse tribe of the Sigmodontinae subfamily (Rodentia, Cricetidae, Oryzomyini). The systematics of this genus and questions about its diversity and range have been investigated by morphological, molecular (Cytb and COI sequences) and karyotype analysis (classic cytogenetics and chromosome painting), which have revealed candidate species and new distribution areas. Here we analyzed four species of Neacomys by chromosome painting with Hylaeamys megacephalus (HME) whole-chromosome probes, and compared the results with two previously studied Neacomys species and with other taxa from Oryzomyini and Akodontini tribes that have been hybridized with HME probes. Maximum Parsimony (MP) analyses were performed with the PAUP and T.N.T. software packages, using a non-additive (unordered) multi-state character matrix, based on chromosomal morphology, number and syntenic blocks. We also compared the chromosomal phylogeny obtained in this study with molecular topologies (Cytb and COI) that included eastern Amazonian species of Neacomys, to define the phylogenetic relationships of these taxa. RESULTS: The comparative chromosome painting analysis of the seven karyotypes of the six species of Neacomys shows that their diversity is due to 17 fusion/fission events and one translocation, pericentric inversions in four syntenic blocks, and constitutive heterochromatin (CH) amplification/deletion of six syntenic autosomal blocks plus the X chromosome. The chromosomal phylogeny is consistent with the molecular relationships of species of Neacomys. We describe new karyotypes and expand the distribution area for species from eastern Amazonia and detect complex rearrangements by chromosome painting among the karyotypes. CONCLUSIONS: Our phylogeny reflects the molecular relationships of the Akodontini and Oryzomyini taxa and supports the monophyly of Neacomys. This work presents new insights about the chromosomal evolution of this group, and we conclude that the karyotypic divergence is in accord with phylogenetic relationships.


Subject(s)
Chromosome Painting , Chromosomes, Mammalian/genetics , Phylogeny , Sigmodontinae/genetics , Animals , Brazil , DNA Probes , Geography , Karyotype , Synteny
9.
BMC Evol Biol ; 18(1): 62, 2018 04 25.
Article in English | MEDLINE | ID: mdl-29699485

ABSTRACT

BACKGROUND: The family Phyllostomidae (Chiroptera) shows wide morphological, molecular and cytogenetic variation; many disagreements regarding its phylogeny and taxonomy remains to be resolved. In this study, we use chromosome painting with whole chromosome probes from the Phyllostomidae Phyllostomus hastatus and Carollia brevicauda to determine the rearrangements among several genera of the Nullicauda group (subfamilies Gliphonycterinae, Carolliinae, Rhinophyllinae and Stenodermatinae). RESULTS: These data, when compared with previously published chromosome homology maps, allow the construction of a phylogeny comparable to those previously obtained by morphological and molecular analysis. Our phylogeny is largely in agreement with that proposed with molecular data, both on relationships between the subfamilies and among genera; it confirms, for instance, that Carollia and Rhinophylla, previously considered as part of the same subfamily are, in fact, distant genera. CONCLUSIONS: The occurrence of the karyotype considered ancestral for this family in several different branches suggests that the diversification of Phyllostomidae into many subfamilies has occurred in a short period of time. Finally, the comparison with published maps using human whole chromosome probes allows us to track some syntenic associations prior to the emergence of this family.


Subject(s)
Chiroptera/classification , Chiroptera/genetics , Chromosome Painting , Chromosomes, Mammalian/genetics , Evolution, Molecular , Phylogeny , Animals , Chromosome Banding , Humans , Karyotype , Karyotyping , Software
10.
Chromosoma ; 125(4): 701-8, 2016 09.
Article in English | MEDLINE | ID: mdl-26661581

ABSTRACT

The XX/XY system is the rule among mammals. However, many exceptions from this general pattern have been discovered since the last decades. One of these non-conventional sex chromosome mechanisms is the multiple sex chromosome system, which is evolutionary fixed among many bat species of the family Phyllostomidae, and has arisen by a translocation between one original gonosome (X or Y chromosome), and an autosome, giving rise to a "neo-XY body." The aim of this work is to study the synaptic behavior and the chromatin remodeling of multiple sex chromosomes in different species of phyllostomid bats using electron microscopy and molecular markers. Testicular tissues from adult males of the species Artibeus lituratus, Artibeus planirostris, Uroderma bilobatum, and Vampyrodes caraccioli from the eastern Amazonia were analyzed by optical/electron microscopy and immunofluorescence of meiotic proteins involved in synapsis (SYCP3 and SYCE3), sister-chromatid cohesion (SMC3), and chromatin silencing (BRCA1, γ-H2AX, and RNApol 2). The presence of asynaptic axes-labeled by BRCA1 and γ-H2AX-at meiotic prophase in testes that have a normal development of spermatogenesis, suggests that the basic mechanism that arrests spreading of transcriptional silencing (meiotic sex chromosome inactivation (MSCI)) to the autosomal segments may be per se the formation of a functional synaptonemal complex between homologous or non-homologous regions, and thus, this SC barrier might be probably related to the preservation of fertility in these systems.


Subject(s)
Chiroptera/genetics , Chromatin Assembly and Disassembly/physiology , Chromatin/metabolism , Sex Determination Processes/genetics , X Chromosome/genetics , Y Chromosome/genetics , Animals , Chromosome Pairing/genetics , Male , Pachytene Stage/physiology , Spermatocytes/metabolism , Spermatogenesis/physiology
11.
BMC Genet ; 18(1): 35, 2017 04 17.
Article in English | MEDLINE | ID: mdl-28412934

ABSTRACT

BACKGROUND: Holocentric chromosomes occur in approximately 750 species of eukaryotes. Among them, the genus Tityus (Scorpiones, Buthidae) has a labile karyotype that shows complex multivalent associations during male meiosis. Thus, taking advantage of the excellent model provided by the Buthidae scorpions, here we analyzed the chromosomal distribution of several repetitive DNA classes on the holocentric chromosomes of different populations of the species Tityus obscurus Gervais, 1843, highlighting their involvement in the karyotypic differences found among them. RESULTS: This species shows inter- and intrapopulational karyotype variation, with seven distinct cytotypes: A (2n = 16), B (2n = 14), C (2n = 13), D (2n = 13), E (2n = 12), F (2n = 12) and G (2n = 11). Furthermore, exhibits achiasmatic male meiosis and lacks heteromorphic sex chromosomes. Trivalent and quadrivalent meiotic associations were found in some cytotypes. In them, 45S rDNAs were found in the terminal portions of two pairs, while TTAGG repeats were found only at the end of the chromosomes. In the cytotype A (2n = 16), the U2 snRNA gene mapped to pair 1, while the H3 histone cluster and C 0 t-1 DNA fraction was terminally distributed on all pairs. Mariner transposons were found throughout the chromosomes, with the exception of one individual of cytotype A (2n = 16), in which it was concentrated in heterochromatic regions. CONCLUSIONS: Chromosomal variability found in T. obscurus are due to rearrangements of the type fusion/fission and reciprocal translocations in heterozygous. These karyotype differences follow a geographical pattern and may be contributing to reproductive isolation between populations analyzed. Our results also demonstrate high mobility of histone H3 genes. In contrast, other multigene families (45S rDNA and U2 snRNA) have conserved distribution among individuals. The accumulation of repetitive sequences in distal regions of T. obscurus chromosomes, suggests that end of chromosome are not covered by the kinetochore.


Subject(s)
Heterochromatin/genetics , Scorpions/genetics , Animals , Chromosome Mapping , DNA Probes/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Heterochromatin/chemistry , Heterochromatin/metabolism , In Situ Hybridization, Fluorescence , Karyotype , Male , Meiosis , Multigene Family , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Repetitive Sequences, Nucleic Acid , Sex Chromosomes/chemistry , Sex Chromosomes/genetics
12.
BMC Evol Biol ; 16(1): 119, 2016 06 04.
Article in English | MEDLINE | ID: mdl-27260645

ABSTRACT

BACKGROUND: The subtribe Vampyressina (sensu Baker et al. 2003) encompasses approximately 43 species and seven genera and is a recent and diversified group of New World leaf-nosed bats specialized in fruit eating. The systematics of this group continues to be debated mainly because of the lack of congruence between topologies generated by molecular and morphological data. We analyzed seven species of all genera of vampyressine bats by multidirectional chromosome painting, using whole-chromosome-painting probes from Carollia brevicauda and Phyllostomus hastatus. Phylogenetic analyses were performed using shared discrete chromosomal segments as characters and the Phylogenetic Analysis Using Parsimony (PAUP) software package, using Desmodontinae as outgroup. We also used the Tree Analysis Using New Technology (TNT) software. RESULTS: The result showed a well-supported phylogeny congruent with molecular topologies regarding the sister taxa relationship of Vampyressa and Mesophylla genera, as well as the close relationship between the genus Chiroderma and Vampyriscus. CONCLUSIONS: Our results supported the hypothesis that all genera of this subtribe have compound sex chromosome systems that originated from an X-autosome translocation, an ancestral condition observed in the Stenodermatinae. Additional rearrangements occurred independently in the genus Vampyressa and Mesophylla yielding the X1X1X2X2/X1X2Y sex chromosome system. This work presents additional data supporting the hypothesis based on molecular studies regarding the polyphyly of the genus Vampyressa and its sister relationship to Mesophylla.


Subject(s)
Chiroptera/classification , Chiroptera/genetics , Chromosomes, Mammalian/genetics , Phylogeny , Sex Chromosomes/genetics , Animals , Chromosome Painting , Evolution, Molecular , Karyotyping , Species Specificity
13.
Cytogenet Genome Res ; 148(2-3): 199-210, 2016.
Article in English | MEDLINE | ID: mdl-27255109

ABSTRACT

The spiny rats of the genus Proechimys have a wide distribution in the Amazon, covering all areas of endemism of this region. We analyzed the karyotype and cytochrome b (Cyt b) sequences in Proechimys goeldii from 6 localities representing 3 interfluves of the eastern Amazon. A clear separation of P. goeldii into 2 monophyletic clades was observed, both chromosomally and based on Cyt b sequences: cytotype A (2n = 26x2640;/27x2642;, NF = 42) for samples from the Tapajos-Xingu interfluve and cytotype B (2n = 24x2640;/25x2642;, NF = 42) for samples from the Xingu-Tocantins interfluve and east of the Tocantins River. The karyotypes differ in a pericentric inversion and a centric fusion/fission and an average nucleotide divergence of 6.1%, suggesting cryptic species. Meiotic analysis confirmed the presence of a XX/XY1Y2 multiple sex chromosome determination system for both karyotypes. The karyotypes also vary from the literature (2n = 24, NF = 42, XX/XY). The autosome translocated to the X chromosome is different both in size and morphology to P. cf. longicaudatus, which also has a multiple sex chromosome determination system (2n = 14x2640;/15x2640;x2642;/16x2640;/17x2642;, NF = 14). The Xingu River is a barrier that separates populations of P. goeldii, thus maintaining their allopatric nature and providing an explanation for the molecular and cytogenetic patterns observed for the Xingu River but not the Tocantins River.


Subject(s)
Ecosystem , Evolution, Molecular , Genetic Speciation , Rivers , Rodentia/classification , Rodentia/genetics , Sex Chromosomes/genetics , Animals , Brazil , Chromosome Inversion , Cytochromes b/genetics , Female , In Situ Hybridization, Fluorescence , Karyotype , Male , Phylogeny , Species Specificity , Translocation, Genetic
14.
Genetica ; 144(4): 407-15, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27300547

ABSTRACT

Twelve specimens of the bat Cormura brevirostris (Emballonuridae: Chiroptera) were collected from four localities in the Brazilian Amazon region and analyzed by classical and molecular cytogenetics. The diploid number and autosomal fundamental number were as previously reported (2n = 22 and FNa = 40, respectively). Fluorescence in situ hybridization using rDNA probes and silver nitrate technique demonstrated the presence of two NOR sites and the presence of internal telomeric sequences at pericentromeric regions of all chromosomes with exception of Y. Based on meiotic studies and chromosome banding we suggest that the sex chromosome pair of C. brevirostris was equivocally identified as it appears in the literature. Meiotic analysis demonstrated that at diplotene-diakinesis the cells had a ring conformation involving four chromosome pairs. This suggests the occurrence of multiple reciprocal translocations among these chromosomes, which is a very rare phenomenon in vertebrates, and has never been described in Eutheria.


Subject(s)
Chiroptera/genetics , Chromosome Banding , Meiosis/genetics , Animals , Biodiversity , Brazil , Chiroptera/classification , Female , Geography , In Situ Hybridization, Fluorescence , Male , RNA, Ribosomal, 18S/genetics
15.
Cytogenet Genome Res ; 146(4): 296-305, 2015.
Article in English | MEDLINE | ID: mdl-26587770

ABSTRACT

Neacomys (Sigmodontinae) comprises 8 species mainly found in the Amazonian region. We describe 5 new karyotypes from Brazilian Amazonia: 2 cytotypes for N. paracou (2n = 56/FNa = 62-66), 1 for N. dubosti (2n = 64/FNa = 68), and 2 for Neacomys sp. (2n = 58/FNa = 64-70), with differences in the 18S rDNA. Telomeric probes did not show ITS. We provide a phylogeny using Cytb, and the analysis suggests that 2n = 56 with a high FNa is ancestral for the genus, as found in N. paracou, being retained by the ancestral forms of the other species, with an increase in 2n occurring independently in N. spinosus and N. dubosti. Alternatively, an increase in 2n may have occurred in the ancestral taxon of the other species, followed by independent 2n-reduction events in Neacomys sp. and in the ancestral species of N. tenuipes, N. guianae, N. musseri, and N. minutus. Finally, a drastic reduction event in the diploid number occurred in the ancestral species of N. musseri and N. minutus which exhibit the lowest 2n of the genus. The karyotypic variations found in both intra- and interspecific samples, associated with the molecular phylogeny, suggest a chromosomal evolution with amplification/deletion of constitutive heterochromatin and rearrangements including fusions, fissions, and pericentric inversions.


Subject(s)
Evolution, Molecular , Karyotyping , Rodentia/genetics , Animals , Chromosome Banding , Phylogeny , Rodentia/classification
16.
Genet Mol Biol ; 38(2): 213-9, 2015 May.
Article in English | MEDLINE | ID: mdl-26273225

ABSTRACT

Several types of sex chromosome systems have been recorded among Gymnotiformes, including male and female heterogamety, simple and multiple sex chromosomes, and different mechanisms of origin and evolution. The X1X1X2X2/X1X2Y systems identified in three species of this order are considered homoplasic for the group. In the genus Brachyhypopomus, only B. gauderio presented this type of system. Herein we describe the karyotypes of Brachyhypopomus pinnicaudatus and B. n. sp. FLAV, which have an X1X1X2X2/X1X2Y sex chromosome system that evolved via fusion between an autosome and the Y chromosome. The morphology of the chromosomes and the meiotic pairing suggest that the sex chromosomes of B. gauderio and B. pinnicaudatus have a common origin, whereas in B . n. sp. FLAV the sex chromosome system evolved independently. However, we cannot discard the possibility of common origin followed by distinct processes of differentiation. The identification of two new karyotypes with an X1X1X2X2/X1X2Y sex chromosome system in Gymnotiformes makes it the most common among the karyotyped species of the group. Comparisons of these karyotypes and the evolutionary history of the taxa indicate independent origins for their sex chromosomes systems. The recurrent emergence of the X1X1X2X2/X1X2Y system may represent sex chromosomes turnover events in Gymnotiformes.

17.
Mutagenesis ; 29(3): 215-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24618992

ABSTRACT

Aneuploidies are numerical genetic alterations that lead to changes in the normal number of chromosomes due to abnormal segregation during cell division. This type of alteration can occur spontaneously or as a result of exposure to mutagenic agents. The presence of these agents in the environment has increased concern about potential damage to human health. Rotenone, derived from plants of the genera Derris and Lonchocarpus, is a product that is used all over the world as a pesticide and piscicide. Before establishing its potential and efficiency for these purposes, it is essential to know more about the possible adverse effects that it may cause. The current work aimed to evaluate the mutagenic potential of rotenone using fish from the species Oreochromis niloticus, as well as to help in understanding its action mechanism. Our results showed the mutagenic potential of rotenone evidenced by increased formation of micronuclei and nuclear buds at low doses of exposure. The use of fluorescence in situ hybridisation technique made it possible to measure the aneugenic potential of the substance, probably due to its impairment of mitotic spindle formation.


Subject(s)
Aneugens/toxicity , Cichlids/genetics , Micronucleus Tests/methods , Rotenone/toxicity , Aneuploidy , Animals , Brazil , DNA Fragmentation/drug effects , Female , Fisheries , Fresh Water , Humans , In Situ Hybridization, Fluorescence , Male , Pesticides/toxicity , Spindle Apparatus/drug effects
18.
Chromosome Res ; 21(2): 107-19, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23494775

ABSTRACT

Rodentia comprises 42 % of living mammalian species. The taxonomic identification can be difficult, the number of species currently known probably being underestimated, since many species show only slight morphological variations. Few studies surveyed the biodiversity of species, especially in the Amazon region. Cytogenetic studies show great chromosomal variability in rodents, with diploid numbers ranging from 10 to 102, making it difficult to find chromosomal homologies by comparative G banding. Chromosome painting is useful, but only a few species of rodents have been studied by this technique. In this study, we sorted whole chromosome probes by fluorescence-activated cell sorting from two Hylaeamys megacephalus individuals, an adult female (2n = 54) and a fetus (2n = 50). We made reciprocal chromosome painting between these karyotypes and cross-species hybridization on Cerradomys langguthi (2n = 46). Both species belong to the tribe Oryzomyini (Sigmodontinae), which is restricted to South America and were collected in the Amazon region. Twenty-four chromosome-specific probes from the female and 25 from the fetus were sorted. Reciprocal chromosome painting shows that the karyotype of the fetus does not represent a new cytotype, but an unbalanced karyotype with multiple rearrangements. Cross-species hybridization of H. megacephalus probes on metaphases of C. langguthi shows that 11 chromosomes of H. megacephalus revealed conserved synteny, 10 H. megacephalus probes hybridized to two chromosomal regions and three hybridized to three regions. Associations were observed on chromosomes pairs 1-4 and 11. Fluorescence in situ hybridization with a telomeric probe revealed interstitial regions in three pairs (1, 3, and 4) of C. langguthi chromosomes. We discuss the genomic reorganization of the C. langguthi karyotype.


Subject(s)
Karyotype , Karyotyping/methods , Sigmodontinae/classification , Sigmodontinae/genetics , Animals , Brazil , Chromosome Banding , Chromosome Painting , DNA Probes/genetics , Diploidy , Female , Flow Cytometry , Male , Metaphase , Species Specificity , Telomere/genetics
19.
Genet Mol Biol ; 37(3): 526-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25249775

ABSTRACT

Plethodontid salamanders of genus Bolitoglossa constitute the largest and most diverse group of salamanders, including around 20% of living caudate species. Recent studies have indicated the occurrence of five recognized species in the Brazilian Amazon Rainforest. We present here the first cytogenetic data of a Brazilian salamander, which may prove to be a useful by contribution to the cytotaxonomy of the genus. Specimens were collected near the "type" locality (Utinga, Belém, PA, Brazil). Chromosomal preparations from duodenal epithelial cells and testes were subjected to Giemsa staining, C-banding and DAPI/CMA3 fluorochrome staining. All specimens showed a karyotype with 13 bi-armed chromosome pairs (2n = 26). Nucleolar Organizer Regions, evidenced by CMA3, were located distally on the long arm of pair 7 (7q). DAPI+ heterochromatin was predominantly centromeric, with some small pericentromeric bands. Although the C-banding patterns of other Bolitoglossa species are so far unknown, cytogenetic studies conducted in other Plethodontid salamanders have demonstrated that pericentromeric heterochromatin is a useful cytological marker for identifying interspecific homeologies. Species diversification is usually accompanied by chromosomal changes. Therefore, the cytogenetic characterization of Bolitoglossa populations from the middle and western Brazilian Amazon Basin could identify differences which may lead to the identification of new species.

20.
Genet Mol Biol ; 37(4): 638-45, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25505838

ABSTRACT

Cytogenetic studies were carried out on samples of Parapteronotus hasemani, Sternarchogiton preto and Sternarchorhamphus muelleri (Apteronotidae, Gymnotiformes) from the Amazon basin. The first two species exhibited both a 2n = 52 karyotype, but differed in their karyotypic formulae, distribution of constitutive heterochromatin, and chromosomal location of the NOR. The third species, Sternarchorhamphus muelleri, was found to have a 2n = 32 karyotype. In all three species the DAPI and chromomycin A3 staining results were consistent with the C-banding results and nucleolar organizer region (NOR) localization. The 18S rDNA probe confirmed that there was only one pair of ribosomal DNA cistron bearers per species. The telomeric probe did not reveal interstitial telomeric sequences (ITS). The karyotypic differences among these species can be used for taxonomic identification. These data will be useful in future studies of these fishes and help understanding the phylogenetic relationships and chromosomal evolution of the Apteronotidae.

SELECTION OF CITATIONS
SEARCH DETAIL