Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 183
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(29): e2301250120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428903

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Swine , Muscular Dystrophy, Duchenne/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Proteome/metabolism , Stroke Volume , Ventricular Function, Left , Muscle, Skeletal/metabolism , Exons/genetics
2.
Development ; 148(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34874452

ABSTRACT

Despite four decades of effort, robust propagation of pluripotent stem cells from livestock animals remains challenging. The requirements for self-renewal are unclear and the relationship of cultured stem cells to pluripotent cells resident in the embryo uncertain. Here, we avoided using feeder cells or serum factors to provide a defined culture microenvironment. We show that the combination of activin A, fibroblast growth factor and the Wnt inhibitor XAV939 (AFX) supports establishment and continuous expansion of pluripotent stem cell lines from porcine, ovine and bovine embryos. Germ layer differentiation was evident in teratomas and readily induced in vitro. Global transcriptome analyses highlighted commonality in transcription factor expression across the three species, while global comparison with porcine embryo stages showed proximity to bilaminar disc epiblast. Clonal genetic manipulation and gene targeting were exemplified in porcine stem cells. We further demonstrated that genetically modified AFX stem cells gave rise to cloned porcine foetuses by nuclear transfer. In summary, for major livestock mammals, pluripotent stem cells related to the formative embryonic disc are reliably established using a common and defined signalling environment. This article has an associated 'The people behind the papers' interview.


Subject(s)
Cell Differentiation , Embryo, Mammalian/metabolism , Germ Layers/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cattle , Embryo, Mammalian/cytology , Germ Layers/cytology , Livestock , Pluripotent Stem Cells/cytology , Sheep , Species Specificity , Swine
3.
Lab Invest ; 103(2): 100013, 2023 02.
Article in English | MEDLINE | ID: mdl-37039150

ABSTRACT

Amyotrophic lateral sclerosis (ALS) causes progressive degeneration of the motor neurons. In this study, we delivered the genetic construct including the whole locus of human mutant superoxide dismutase 1 (SOD1) with the promoter region of human SOD1 into porcine zygotes using intracytoplasmic sperm injection-mediated gene transfer, and we thereby generated a pig model of human mutant SOD1-mediated familial ALS. The established ALS pig model exhibited an initial abnormality of motor neurons with accumulated misfolded SOD1. The ALS pig model, with a body size similar to that of human beings, will provide opportunities for cell and gene therapy platforms in preclinical translational research.


Subject(s)
Amyotrophic Lateral Sclerosis , Superoxide Dismutase-1 , Animals , Humans , Male , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Disease Models, Animal , Motor Neurons/pathology , Mutation , Semen , Superoxide Dismutase-1/genetics , Swine
4.
Xenotransplantation ; 30(6): e12825, 2023.
Article in English | MEDLINE | ID: mdl-37771249

ABSTRACT

There have been high expectations in recent years of using xenotransplantation and regenerative medicine to treat humans, and pigs have been utilized as the donor model. Pigs used for these clinical applications must be microbiologically safe, that is, free of infectious pathogens, to prevent infections not only in livestock, but also in humans. Currently, however, the full spectrum of pathogens that can infect to the human host or cause disease in transplanted porcine organs/cells has not been fully defined. In the present study, we thus aimed to develop a larger panel for the detection of pathogens that could potentially infect xenotransplantation donor pigs. Our newly developed panel, which consisted of 76 highly sensitive PCR detection assays, was able to detect 41 viruses, 1 protozoa, and a broad range of bacteria (by use of universal 16S rRNA primers). The applicability of this panel was validated using blood samples from uterectomy-born piglets, and pathogens suspected to be vertically transmitted from sows to piglets were successfully detected. We estimate that, at least for viruses and bacteria, the number of target pathogens detected by the developed screening panel should suffice to meet the microbiological safety levels required worldwide for xenotransplantation and/or regenerative therapy. This panel provides greater diagnosis options to produce donor pigs so that it would render unnecessary to screen for all pathogens listed. Instead, the new panel could be utilized to detect only required pathogens within a given geographic range where the donor pigs for xenotransplantation have been and/or are being developed.


Subject(s)
Endogenous Retroviruses , Tissue Donors , Swine , Animals , Humans , Female , Transplantation, Heterologous , RNA, Ribosomal, 16S
5.
Lab Invest ; 102(5): 560-569, 2022 05.
Article in English | MEDLINE | ID: mdl-34980882

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, manifesting as the progressive development of fluid-filled renal cysts. In approximately half of all patients with ADPKD, end-stage renal disease results in decreased renal function. In this study, we used CRISPR-Cas9 and somatic cell cloning to produce pigs with the unique mutation c.152_153insG (PKD1insG/+). Pathological analysis of founder cloned animals and progeny revealed that PKD1insG/+ pigs developed many pathological conditions similar to those of patients with heterozygous mutations in PKD1. Pathological similarities included the formation of macroscopic renal cysts at the neonatal stage, number and cystogenic dynamics of the renal cysts formed, interstitial fibrosis of the renal tissue, and presence of a premature asymptomatic stage. Our findings demonstrate that PKD1insG/+ pigs recapitulate the characteristic symptoms of ADPKD.


Subject(s)
Polycystic Kidney, Autosomal Dominant , Animals , Female , Heterozygote , Humans , Kidney/pathology , Male , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Swine , TRPP Cation Channels/genetics
6.
J Exp Zool B Mol Dev Evol ; 338(8): 505-515, 2022 12.
Article in English | MEDLINE | ID: mdl-36189911

ABSTRACT

The chondrocranium is a key structure of the skull, but our knowledge of its embryonic development is based mostly on investigations of few stages across taxa. Variation of chondrocranial features is known across species, but little is known about intraspecific variation, or its evolution in the context of domestication. Here, we investigated two specific structures of the chondrocranium in three windows of embryonic development. The anatomy of one of these structures was also compared among adult skulls of chickens and their wild ancestor (red junglefowl [RJF]). The proccesus tectalis and the prenasal process, along with the surrounding area of the orbitonasal foramina, presented variation throughout the ontogeny and in the adults. The processus tectalis showed distinct variation from the earliest stage studied to the adult. The numbers of orbitonasal foramina were also found to be variable in the ancestor and breeds studied. Furthermore, during early embryonic development, the prenasal process is similar across breeds and RJF, but later in embryonic development this structure presents variable states. The embryonic and adult variation found herein could be an example of intraspecific variation under domestication, resulting from different types of tissue interrelationship during development.


Subject(s)
Chickens , Domestication , Animals , Chickens/genetics , Skull , Embryonic Development
7.
J Inherit Metab Dis ; 45(6): 1059-1069, 2022 11.
Article in English | MEDLINE | ID: mdl-35866457

ABSTRACT

Patients with urea cycle disorders intermittently develop episodes of decompensation with hyperammonemia. Although such an episode is often associated with starvation and catabolism, its molecular basis is not fully understood. First, we attempted to elucidate the mechanism of such starvation-associated hyperammonemia. Using a mouse embryonic fibroblast (MEF) culture system, we found that glucose starvation increases ammonia production, and that this increase is associated with enhanced glutaminolysis. These results led us to focus on α-ketoglutarate (AKG), a glutamate dehydrogenase inhibitor, and a major anaplerotic metabolite. Hence, we sought to determine the effect of dimethyl α-ketoglutarate (DKG), a cell-permeable AKG analog, on MEFs and found that DKG mitigates ammonia production primarily by reducing flux through glutamate dehydrogenase. We also verified that DKG reduces ammonia in an NH4 Cl-challenged hyperammonemia mouse model and observed that DKG administration reduces plasma ammonia concentration to 22.8% of the mean value for control mice that received only NH4 Cl. In addition, we detected increases in ornithine concentration and in the ratio of ornithine to arginine following DKG treatment. We subsequently administered DKG intravenously to a newborn pig with hyperammonemia due to ornithine transcarbamylase deficiency and found that blood ammonia concentration declined significantly over time. We determined that this effect is associated with facilitated reductive amination and glutamine synthesis. Our present data indicate that energy starvation triggers hyperammonemia through enhanced glutaminolysis and that DKG reduces ammonia accumulation via pleiotropic mechanisms both in vitro and in vivo. Thus, cell-permeable forms of AKG are feasible candidates for a novel hyperammonemia treatment.


Subject(s)
Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Mice , Animals , Swine , Hyperammonemia/drug therapy , Hyperammonemia/metabolism , Glutamine/metabolism , Ammonia , Glutamate Dehydrogenase , Fibroblasts/metabolism , Ornithine
8.
J Reprod Dev ; 68(4): 233-237, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35598970

ABSTRACT

Recent developments in reproductive biology have enabled the generation of genetically engineered pigs as models for inherited human diseases. Although a variety of such models for monogenic diseases are currently available, reproduction of human diseases caused by haploinsufficiency remains a major challenge. The present study compares the phenotypes of mouse and pig models of Marfan syndrome (MFS), with a special focus on the expressivity and penetrance of associated symptoms. Furthermore, investigation of the gene regulation mechanisms associated with haploinsufficiency will be of immense utility in developing faithful MFS pig models.


Subject(s)
Marfan Syndrome , Animals , Animals, Genetically Modified , Fibrillin-1/genetics , Haploinsufficiency , Humans , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Mutation , Phenotype , Swine
9.
Circulation ; 141(2): 132-146, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31928435

ABSTRACT

BACKGROUND: Myxomatous valve degeneration (MVD) involves the progressive thickening and degeneration of the heart valves, leading to valve prolapse, regurgitant blood flow, and impaired cardiac function. Leukocytes composed primarily of macrophages have recently been detected in myxomatous valves, but the timing of the presence and the contributions of these cells in MVD progression are not known. METHODS: We examined MVD progression, macrophages, and the valve microenvironment in the context of Marfan syndrome (MFS) using mitral valves from MFS mice (Fbn1C1039G/+), gene-edited MFS pigs (FBN1Glu433AsnfsX98/+), and patients with MFS. Additional histological and transcriptomic evaluation was performed by using nonsyndromic human and canine myxomatous valves, respectively. Macrophage ontogeny was determined using MFS mice transplanted with mTomato+ bone marrow or MFS mice harboring RFP (red fluorescent protein)-tagged C-C chemokine receptor type 2 (CCR2) monocytes. Mice deficient in recruited macrophages (Fbn1C1039G/+;Ccr2RFP/RFP) were generated to determine the requirements of recruited macrophages to MVD progression. RESULTS: MFS mice recapitulated histopathological features of myxomatous valve disease by 2 months of age, including mitral valve thickening, increased leaflet cellularity, and extracellular matrix abnormalities characterized by proteoglycan accumulation and collagen fragmentation. Diseased mitral valves of MFS mice concurrently exhibited a marked increase of infiltrating (MHCII+, CCR2+) and resident macrophages (CD206+, CCR2-), along with increased chemokine activity and inflammatory extracellular matrix modification. Likewise, mitral valve specimens obtained from gene-edited MFS pigs and human patients with MFS exhibited increased monocytes and macrophages (CD14+, CD64+, CD68+, CD163+) detected by immunofluorescence. In addition, comparative transcriptomic evaluation of both genetic (MFS mice) and acquired forms of MVD (humans and dogs) unveiled a shared upregulated inflammatory response in diseased valves. Remarkably, the deficiency of monocytes was protective against MVD progression, resulting in a significant reduction of MHCII macrophages, minimal leaflet thickening, and preserved mitral valve integrity. CONCLUSIONS: All together, our results suggest sterile inflammation as a novel paradigm to disease progression, and we identify, for the first time, monocytes as a viable candidate for targeted therapy in MVD.


Subject(s)
Heart Valve Diseases/pathology , Marfan Syndrome/pathology , Monocytes/metabolism , Animals , Chemokine CCL2/metabolism , Disease Models, Animal , Disease Progression , Dogs , Extracellular Matrix/metabolism , Fibrillin-1/genetics , Fibrillin-1/metabolism , Heart Valve Diseases/complications , Heart Valve Diseases/metabolism , Leukocyte Common Antigens/metabolism , Macrophages/cytology , Macrophages/metabolism , Marfan Syndrome/complications , Marfan Syndrome/metabolism , Mice , Mice, Inbred C57BL , Mitral Valve/metabolism , Mitral Valve/physiopathology , Monocytes/cytology , Swine
10.
Proc Natl Acad Sci U S A ; 115(4): 708-713, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311328

ABSTRACT

Genetically engineered pigs play an indispensable role in the study of rare monogenic diseases. Pigs harboring a gene responsible for a specific disease can be efficiently generated via somatic cell cloning. The generation of somatic cell-cloned pigs from male cells with mutation(s) in an X chromosomal gene is a reliable and straightforward method for reproducing X-linked genetic diseases (XLGDs) in pigs. However, the severe symptoms of XLGDs are often accompanied by impaired growth and reproductive disorders, which hinder the reproduction of these valuable model animals. Here, we generated unique chimeric boars composed of mutant cells harboring a lethal XLGD and normal cells. The chimeric boars exhibited the cured phenotype with fertility while carrying and transmitting the genotype of the XLGD. This unique reproduction system permits routine production of XLGD model pigs through the male-based breeding, thereby opening an avenue for translational research using disease model pigs.


Subject(s)
Embryo Culture Techniques/methods , Genetic Diseases, X-Linked/genetics , Reproduction/genetics , Animals , Animals, Genetically Modified/genetics , Breeding , Chimera , Cloning, Organism/methods , Disease Models, Animal , Fertility , Gene Knockout Techniques/methods , Genetic Engineering/methods , Male , Nuclear Transfer Techniques , Swine/genetics
11.
Sci Technol Adv Mater ; 22(1): 511-521, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34220339

ABSTRACT

Calcium-phosphate cements (CPCs) have been used as bone filling materials in orthopaedic surgery. However, CPCs are set using an acid-base reaction, and then change into stable hydroxyapatite (HAp) in a living body. Therefore, we developed bioresorbable chelate-setting ß-tricalcium phosphate (ß-TCP) cements based on surface modifications of inositol phosphate (IP6). In order to improve the bioresorbability, we fabricated IP6/ß-TCP cements hybridized with poly(lactic-co-glycolic acid) (PLGA) particles as a pore-forming agent. The compressive strengths of the cements with the amounts of 5 and 10 mass% PLGA particles were 23.2 and 22.8 MPa, respectively. There was no significant difference from cements without PLGA (23.4 MPa). The setting times of the cement specimens with PLGA particles (30 min) were a little longer than those without PLGA particles (26.3 min). The lack of cytotoxicity of the cement specimens was confirmed using osteoblast-like cells (MC3T3-E1). Cylindrical defects were made by drilling into the tibia of mini-pigs and injecting the prepared cement pastes into the defects. Twelve weeks after implantation the specimens were stained with toluidine blue and histologically evaluated. Histological evaluation of cement specimens with PLGA particles showed enhanced bioresorbability. Newly-formed bone was also observed inside cement specimens with PLGA particles. The IP6/ß-TCP cement specimens with PLGA particles had excellent material properties, such as injectability, compressive strength, high porosity, no cytotoxicity in vitro, bioresorption and bone formation abilities in vivo. Organic-inorganic hybridized CPCs are expected to be valuable as novel biodegradable paste-like artificial bone fillers.

12.
Lab Invest ; 100(6): 900, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32203148

ABSTRACT

This article was originally published under Nature Research's License to Publish, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the article have been modified accordingly.

13.
Lab Invest ; 100(6): 887-899, 2020 06.
Article in English | MEDLINE | ID: mdl-32060408

ABSTRACT

Genetic cardiomyopathy is a group of intractable cardiovascular disorders involving heterogeneous genetic contribution. This heterogeneity has hindered the development of life-saving therapies for this serious disease. Genetic mutations in dystrophin and its associated glycoproteins cause cardiomuscular dysfunction. Large animal models incorporating these genetic defects are crucial for developing effective medical treatments, such as tissue regeneration and gene therapy. In the present study, we knocked out the δ-sarcoglycan (δ-SG) gene (SGCD) in domestic pig by using a combination of efficient de novo gene editing and somatic cell nuclear transfer. Loss of δ-SG expression in the SGCD knockout pigs caused a concomitant reduction in the levels of α-, ß-, and γ-SG in the cardiac and skeletal sarcolemma, resulting in systolic dysfunction, myocardial tissue degeneration, and sudden death. These animals exhibited symptoms resembling human genetic cardiomyopathy and are thus promising for use in preclinical studies of next-generation therapies.


Subject(s)
Cardiomyopathies , Sarcoglycans , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Female , Frameshift Mutation/genetics , Gene Knockout Techniques , Male , Myocardium/chemistry , Myocardium/metabolism , Myocardium/pathology , Sarcoglycans/deficiency , Sarcoglycans/genetics , Swine
14.
J Anat ; 237(3): 427-438, 2020 09.
Article in English | MEDLINE | ID: mdl-32786168

ABSTRACT

Trunk muscles in vertebrates are classified as either dorsal epaxial or ventral hypaxial muscles. Epaxial and hypaxial muscles are defined as muscles innervated by the dorsal and ventral rami of spinal nerves, respectively. Each cluster of spinal motor neurons passing through dorsal rami innervates epaxial muscles, whereas clusters traveling on the ventral rami innervate hypaxial muscles. Herein, we show that some motor neurons exhibiting molecular profiles for epaxial muscles follow a path in the ventral rami. Dorsal deep-shoulder muscles and some body wall muscles are defined as hypaxial due to innervation via the ventral rami, but a part of these ventral rami has the molecular profile of motor neurons that innervate epaxial muscles. Thus, the epaxial and hypaxial boundary cannot be determined simply by the ramification pattern of spinal nerves. We propose that, although muscle innervation occurs via the ventral rami, dorsal deep-shoulder muscles and some body wall muscles represent an intermediate group that lies between epaxial and hypaxial muscles.


Subject(s)
Motor Neurons/cytology , Muscle, Skeletal/innervation , Somites/innervation , Spinal Nerves/embryology , Animals , Body Patterning , Chick Embryo , Coturnix , Muscle, Skeletal/embryology , Neural Tube , Somites/embryology , Torso/embryology , Torso/innervation
15.
Dev Dyn ; 248(11): 1044-1058, 2019 11.
Article in English | MEDLINE | ID: mdl-31433887

ABSTRACT

The domestication of the fowl resulted in a large diversity of integumental structures in chicken breeds. Several integumental traits have been investigated from a developmental genetics perspective. However, their distribution among breeds and their developmental morphology remain unexplored. We constructed a discrete trait-breed matrix and conducted a disparity analysis to investigate the variation of these structures in chicken breeds; 20 integumental traits of 72 chicken breeds and the red junglefowl were assessed. The analyses resulted in slight groupings of breed types comparable to standard breed classification based on artificial selection and chicken type use. The red junglefowl groups together with bantams and European breeds. We provide new data on the red junglefowl and four chicken breeds, demonstrating where and when variation arises during embryonic development. We document variation in developmental timing of the egg tooth and feather formation, as well as other kinds of developmental patterning as in the anlagen of different type of combs. Changes in epithelial-mesenchymal signaling interactions may drive the highly diverse integument in chickens. Experimental and comparative work has revealed that the cranial neural crest mesenchyme mediates its interactions with the overlying epithelium and is the likely source of patterning that generates diversity in integumental structures.


Subject(s)
Breeding , Chickens/physiology , Embryonic Development/physiology , Phenotype , Quantitative Trait, Heritable , Animals , Chick Embryo , Domestication
16.
Reprod Med Biol ; 19(2): 142-150, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273819

ABSTRACT

PURPOSE: This study aims to demonstrate vitrification methods that provide reliable cryopreservation for embryos with compromised cryotolerance. METHODS: Two-cell stage mouse embryos and in vitro produced porcine embryos were vitrified using the hollow fiber vitrification (HFV) and Cryotop (CT) methods. The performance of these two methods was compared by the viability of the vitrified-rewarmed embryos. RESULTS: Regardless of the method used, 100% of the mouse 2-cell embryos developed successfully after vitrification-rewarming into the blastocyst stage, whereas vitrification tests using porcine morulae with the HFV method produced significantly better results. The developmental rates of vitrified porcine morula into the blastocyst stage, as well as blastocyst cell number, were 90.3% and 112.3 ± 6.9 in the HFV group compared with 63.4% and 89.5 ± 8.1 in the CT group (P < .05). Vitrification tests using 4- to 8-cell porcine embryos resulted in development into the blastocyst stage (45.5%) in the HFV group alone, demonstrating its better efficacy. The HFV method did not impair embryo viability, even after spontaneous rewarming at room temperature for vitrified embryos, which is generally considered a contraindication. CONCLUSION: Vitrification test using embryos with compromised cryotolerance allows for more precise determining of effective cryopreservation methods and devices.

17.
Appl Environ Microbiol ; 85(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30610075

ABSTRACT

Lactobacillus gasseri LA327, isolated from the large intestine tissue in humans, is a bacteriocinogenic strain with two kinds of class IIb bacteriocin structural genes, i.e., those for gassericin T (GT) and acidocin LF221A (Acd LF221A). In this study, DNA sequencing of the genes for GT and Acd LF221A from L. gasseri LA327 revealed that the amino acid sequences for GT corresponded with those for GT genes, except for GatK (histidine kinase). However, Acd LF221A genes had analogues which differed in at least one amino acid residue, to encode a class IIb bacteriocin designated gassericin S (GS). The LA327 strain retained antimicrobial activity after the deletion of the GT structural genes (gatAX); however, both GS and GT activities were lost by deletion of the putative ABC transporter gene (gatT). This indicates that the LA327 strain produces GS and GT and that GS secretion is performed via GT genes with the inclusion of gatT Homologous expression using deletion mutants of GS and GT, each containing a single peptide, elucidated that GS (GasAX) and GT (GatAX) showed synergistic activity as class IIb bacteriocins and that no synergistic activity was observed between GS and GT peptides. The molecular mass of GS was estimated to be theoretical ca. 5,400 Da by in situ activity assay after SDS-PAGE, clarifying that GS was actually expressed as an active class IIb bacteriocin. Furthermore, the stability of expressed GS to pH, heat, and protease was determined.IMPORTANCE Bacteriocins are regarded as potential alternatives for antibiotics in the absence of highly resistant bacteria. In particular, two-peptide (class IIb) bacteriocins exhibit the maximum activity through the synergy of two components, and their antimicrobial spectra are known to be relatively wide. However, there are few reports of synergistic activity of class IIb bacteriocins determined by isolation and purification of individual peptides. Our results clarified the interaction of each class IIb component peptide for GT and GS via the construction of homologous mutants, which were not dependent on the purification. These data may contribute to understanding the mechanisms of action by which class IIb bacteriocins exhibit wide antibacterial spectra.


Subject(s)
Bacteriocins/biosynthesis , Lactobacillus gasseri/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriocins/chemistry , Bacteriocins/genetics , Drug Stability , Hydrogen-Ion Concentration , Lactobacillus gasseri/genetics , Operon
18.
Reprod Fertil Dev ; 31(4): 820-826, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30384878

ABSTRACT

Immunosurgical isolation of the inner cell mass (ICM) from blastocysts is based on complement-mediated lysis of antibody-coated trophectoderm (TE) cells. Conventionally, anti-species antisera, containing antibodies against multiple undefined TE-cell epitopes, have been used as the antibody source. We previously generated α-1,3-galactosyltransferase deficient (GTKO) pigs to prevent hyperacute rejection of pig-to-primate xenotransplants. Since GTKO pigs lack galactosyl-α-1,3-galactose (αGal) but are exposed to this antigen (e.g. αGal on gut bacteria), they produce anti-αGal antibodies. In this study, we examined whether serum from GTKO pigs could be used as a novel antibody source for multi-species embryo immunosurgery. Mouse, rabbit, pig and cattle blastocysts were used for the experiment. Expression of αGal epitopes on the surface of TE cells was detected in blastocysts of all species tested. GTKO pig serum contained sufficient anti-αGal antibodies to induce complement-mediated lysis of TE cells in blastocysts from all species investigated. Intact ICMs could be successfully recovered and the majority showed the desired level of purity. Our study demonstrates that GTKO pig serum is a reliable and effective source of antibodies targeting the αGal epitopes of TE cells for multi-species embryo immunosurgery.


Subject(s)
Blastocyst/immunology , Epitopes , Galactose/immunology , Animals , Cattle , Mice , Rabbits , Swine
19.
J Reprod Dev ; 65(3): 231-237, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-30773506

ABSTRACT

The partial or complete loss of one X chromosome in humans causes Turner syndrome (TS), which is accompanied by a range of physical and reproductive pathologies. This article reports similarities between the phenotype of a pig with monosomy X and the symptoms of TS in humans. Born as the offspring of a male pig carrying a mutation in an X-chromosomal gene, ornithine transcarbamylase (OTC), the female pig (37,XO) was raised to the age of 36 months. This X-monosomic pig presented with abnormal physical characteristics including short stature, micrognathia, and skeletal abnormalities in the limbs. Furthermore, the female did not exhibit an estrous cycle, even after reaching the age of sexual maturity, and showed no ovarian endocrine activity except for an irregular increase in blood 17ß-estradiol levels, which was seemingly attributable to sporadic follicular development. An autopsy at 36 months revealed an undeveloped reproductive tract with ovaries that lacked follicles. These data demonstrated that the growth processes and anatomical and physiological characteristics of an X-monosomic pig closely resembled those of a human with TS.


Subject(s)
Monosomy/genetics , Turner Syndrome/genetics , Turner Syndrome/veterinary , X Chromosome , Animals , Autopsy , Disease Models, Animal , Female , Genes, X-Linked , Karyotyping , Male , Mutation , Ornithine Carbamoyltransferase/genetics , Ovarian Follicle/abnormalities , Phenotype , Swine , Tomography, X-Ray Computed , Turner Syndrome/diagnosis
20.
Int J Mol Sci ; 20(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817281

ABSTRACT

To improve the therapeutic potential of hepatocyte transplantation, the effects of the mitogen-activated protein kinase kinase 4 (MKK4) inhibitor, myricetin (3,3',4',5,5',7-hexahydroxylflavone) were examined using porcine and human hepatocytes in vitro and in vivo. Hepatocytes were cultured, showing the typical morphology of hepatic parenchymal cell under 1-10 µmol/L of myricetin, keeping hepatocyte specific gene expression, and ammonia removal activity. After injecting the hepatocytes into neonatal Severe combined immunodeficiency (SCID) mouse livers, cell colony formation was found at 10-15 weeks after transplantation. The human albumin levels in the sera of engrafted mice were significantly higher in the recipients of myricetin-treated cells than non-treated cells, corresponding to the size of the colonies. In terms of therapeutic efficacy, the injection of myricetin-treated hepatocytes significantly prolonged the survival of ornithine transcarbamylase-deficient SCID mice from 32 days (non-transplant control) to 54 days. Biochemically, the phosphorylation of MKK4 was inhibited in the myricetin-treated hepatocytes. These findings suggest that myricetin has a potentially therapeutic benefit that regulates hepatocyte function and survival, thereby treating liver failure.


Subject(s)
Flavonoids/pharmacology , Graft Survival/drug effects , Hepatocytes/drug effects , Liver/metabolism , Ammonia/metabolism , Animals , Cryopreservation , Hepatocytes/cytology , Hepatocytes/transplantation , MAP Kinase Kinase 4/metabolism , Mice , Mice, SCID , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Phosphorylation/drug effects , Serum Albumin/metabolism , Swine , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL