Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 43(12): 4272-4290, 2021 12.
Article in English | MEDLINE | ID: mdl-32750769

ABSTRACT

What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than ideal circumstances? Can the application of such algorithms as a pre-processing step improve image interpretability for manual analysis or automatic visual recognition to classify scene content? While there have been important advances in the area of computational photography to restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of improving visual appearance and recognition, which will be an enabling factor for the deployment of visual recognition tools in many real-world scenarios. To address this, we introduce the UG 2 dataset as a large-scale benchmark composed of video imagery captured under challenging conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition. Furthermore, we propose a set of metrics to evaluate the joint improvement of such tasks as well as individual algorithmic advances, including a novel psychophysics-based evaluation regime for human assessment and a realistic set of quantitative measures for object recognition performance. We introduce six new algorithms for image restoration or enhancement, which were created as part of the IARPA sponsored UG 2 Challenge workshop held at CVPR 2018. Under the proposed evaluation regime, we present an in-depth analysis of these algorithms and a host of deep learning-based and classic baseline approaches. From the observed results, it is evident that we are in the early days of building a bridge between computational photography and visual recognition, leaving many opportunities for innovation in this area.

2.
Ultrasonics ; 108: 106183, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32652324

ABSTRACT

A fundamental challenge in non-destructive evaluation using ultrasound is to accurately estimate the thicknesses of different layers or cracks present in the object under examination, which implicitly corresponds to accurately localizing the point-sources of the reflections from the measured signal. Conventional signal processing techniques cannot overcome the axial-resolution limit of the ultrasound imaging system determined by the wavelength of the transmitted pulse. In this paper, starting from the solution to the 1-D wave equation, we show that the ultrasound reflections could be effectively modeled as finite-rate-of-innovation (FRI) signals. The FRI modeling approach is a new paradigm in signal processing. Apart from allowing for the signals to be sampled below the Nyquist rate, the FRI framework also transforms the reconstruction problem into one of parametric estimation. We employ high-resolution parametric estimation techniques to solve the problem. We demonstrate axial super-resolution capability (resolution below the theoretical limit) of the proposed technique both on simulated as well as experimental data. A comparison of the FRI technique with time-domain and Fourier-domain sparse recovery techniques shows that the FRI technique is more robust. We also assess the resolvability of the proposed technique under different noise conditions on data simulated using the Field-II software and show that the reconstruction technique is robust to noise. For experimental validation, we consider Teflon sheets and Agarose phantoms of varying thicknesses. The experimental results show that the FRI technique is capable of super-resolving by a factor of three below the theoretical limit.

SELECTION OF CITATIONS
SEARCH DETAIL