Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurooncol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073687

ABSTRACT

PURPOSE: Emerging data suggest that trastuzumab deruxtecan (T-DXd) is an active treatment for brain metastases from HER2 + breast cancer. We aimed to characterize the activity of T-DXd in the treatment of leptomeningeal metastases (LM) from a range of HER2-altered cancers. METHODS: We reviewed neuro-oncology clinic records between July 2020 and December 2023 to identify patients who received T-DXd to treat LM. RESULTS: Of 18 patients identified, 6 had HER2 + breast cancer, 8 had HER2-low/negative breast cancer, 2 had HER2 + gastroesophageal cancer, and 2 had HER2-mutant non-small cell lung cancer (NSCLC). 10/18 (56%) patients had cytologically confirmed LM by CSF cytology or circulating tumor cell (CTC) capture. A partial response (PR) on MRI using the EORTC/RANO-LM Revised-Scorecard occurred in 4/6 (67%) patients with HER2 + breast LM, 2/8 (25%) patients with HER2-low/negative breast cancer, and 0/4 (0%) patients with HER2 + gastroesophageal cancer or HER2-mutant NSCLC. Median overall survival after initiating T-DXd was 5.8 months. Survival after initiating T-DXd was numerically longer for HER2 + breast cancer patients compared with HER2-low/negative breast and HER2-altered non-breast cancer patients (13.9 months vs. 5.2 months and 4.6 months, respectively). Landmark analysis showed that patients with radiologic LM response to T-DXd by 2.5 months had longer survival than non-responders (14.2 months vs. 2.6 months, HR 0.18, 95% CI 0.05-0.63, p < 0.05), and landmark analyses at 3.5 and 4.5 months after starting T-DXd showed a similar but nonsignificant trend. CONCLUSION: T-DXd induces LM responses in a subset of patients, and such responses may be associated with prolongation of survival. Prospective trials are needed to clarify the role of T-DXd in treating LM and which patients are most likely to benefit.

2.
J Natl Compr Canc Netw ; 21(1): 12-20, 2023 01.
Article in English | MEDLINE | ID: mdl-36634606

ABSTRACT

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Adult , Humans , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Central Nervous System , Mutation
3.
Curr Oncol Rep ; 25(8): 937-950, 2023 08.
Article in English | MEDLINE | ID: mdl-37256537

ABSTRACT

PURPOSE OF REVIEW: Leptomeningeal disease (LMD) is a devastating complication of advanced metastatic cancer associated with a poor prognosis and limited treatment options. This study reviews the current understanding of the clinical presentation, pathogenesis, diagnosis, and treatment of LMD. We highlight opportunities for advances in this disease. RECENT FINDINGS: In recent years, the use of soluble CSF biomarkers has expanded, suggesting improved sensitivity over traditional cytology, identification of targetable mutations, and potential utility for monitoring disease burden. Recent studies of targeted small molecules and intrathecal based therapies have demonstrated an increase in overall and progression-free survival. In addition, there are several ongoing trials evaluating immunotherapy in LMD. Though overall prognosis of LMD remains poor, studies suggest a potential role for soluble CSF biomarkers in diagnosis and management and demonstrate promising findings in patient outcomes with targeted therapies for specific solid tumors. Despite these advances, there continues to be a gap of knowledge in this disease, emphasizing the importance of inclusion of LMD patients in clinical trials.


Subject(s)
Meningeal Neoplasms , Humans , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/therapy , Meningeal Neoplasms/pathology , Prognosis , Mutation
4.
Radiology ; 303(3): 620-631, 2022 06.
Article in English | MEDLINE | ID: mdl-35191738

ABSTRACT

Background The PET tracer (4S)-4-(3-[18F]fluoropropyl)-l-glutamate (18F-FSPG) targets the system xC- cotransporter, which is overexpressed in various tumors. Purpose To assess the role of 18F-FSPG PET/CT in intracranial malignancies. Materials and Methods Twenty-six patients (mean age, 54 years ± 12; 17 men; 48 total lesions) with primary brain tumors (n = 17) or brain metastases (n = 9) were enrolled in this prospective, single-center study (ClinicalTrials.gov identifier: NCT02370563) between November 2014 and March 2016. A 30-minute dynamic brain 18F-FSPG PET/CT scan and a static whole-body (WB) 18F-FSPG PET/CT scan at 60-75 minutes were acquired. Moreover, all participants underwent MRI, and four participants underwent fluorine 18 (18F) fluorodeoxyglucose (FDG) PET imaging. PET parameters and their relative changes were obtained for all lesions. Kinetic modeling was used to estimate the 18F-FSPG tumor rate constants using the dynamic and dynamic plus WB PET data. Imaging parameters were correlated to lesion outcomes, as determined with follow-up MRI and/or pathologic examination. The Mann-Whitney U test or Student t test was used for group mean comparisons. Receiver operating characteristic curve analysis was used for performance comparison of different decision measures. Results 18F-FSPG PET/CT helped identify all 48 brain lesions. The mean tumor-to-background ratio (TBR) on the whole-brain PET images at the WB time point was 26.6 ± 24.9 (range: 2.6-150.3). When 18F-FDG PET was performed, 18F-FSPG permitted visualization of non-18F-FDG-avid lesions or allowed better lesion differentiation from surrounding tissues. In participants with primary brain tumors, the predictive accuracy of the relative changes in influx rate constant Ki and maximum standardized uptake value to discriminate between poor and good lesion outcomes were 89% and 81%, respectively. There were significant differences in the 18F-FSPG uptake curves of lesions with good versus poor outcomes in the primary brain tumor group (P < .05) but not in the brain metastases group. Conclusion PET/CT imaging with (4S)-4-(3-[18F]fluoropropyl)-l-glutamate (18F-FSPG) helped detect primary brain tumors and brain metastases with a high tumor-to-background ratio. Relative changes in 18F-FSPG uptake with multi-time-point PET appear to be helpful in predicting lesion outcomes. Clinical trial registration no. NCT02370563 © RSNA, 2022 Online supplemental material is available for this article.


Subject(s)
Brain Neoplasms , Positron Emission Tomography Computed Tomography , Brain Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18 , Glutamic Acid , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Prospective Studies , Radiopharmaceuticals
5.
J Neurooncol ; 160(1): 233-240, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36227422

ABSTRACT

PURPOSE: Although osimertinib has excellent intracranial activity in metastatic non-small cell lung cancer (NSCLC) with exon 19 deletion or L858R EGFR alterations, measures of local control of brain metastases are less well-reported. We describe lesion-level outcomes of brain metastases treated with osimertinib alone. METHODS: We retrospectively reviewed patients with EGFR-mutant NSCLC with untreated brain metastasis measuring ≥ 5 mm at the time of initiating osimertinib. Cumulative incidence of local recurrence in brain (LRiB) was calculated with death as a competing risk, and univariable and multivariable analyses were conducted to identify factors associated with LRiB. RESULTS: We included 284 brain metastases from 37 patients. Median follow-up was 20.1 months. On initial MRI after starting osimertinib, patient-level response was complete response (CR) in 11 (15%), partial response (PR) in 33 (45%), stable disease (SD) in 18 (25%) and progressive disease (PD) in 11 (15%). The 1-year cumulative incidence of LRiB was 14% (95% CI 9.9-17.9) and was significantly different in patients with a CR (0%), PR (4%), and SD (11%; p = 0.02). Uncontrolled primary tumor (adjusted hazard ratio [aHR] 3.78, 95% CI 1.87-7.66; p < 0.001), increasing number of prior systemic therapies (aHR 2.12, 95% CI 1.49-3.04; p < 0.001), and higher ECOG score (aHR 7.8, 95% CI 1.99-31.81; p = 0.003) were associated with LRiB. CONCLUSIONS: Although 1-year cumulative incidence of LRiB is < 4% with a CR or PR, 1-year cumulative incidence of LRiB is over 10% for patients with less than a PR to osimertinib on initial MRI. These patients should be followed closely for need for additional treatment such as stereotactic radiosurgery.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Aniline Compounds/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/therapeutic use , Retrospective Studies
6.
J Natl Compr Canc Netw ; 18(11): 1537-1570, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33152694

ABSTRACT

The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of adult CNS cancers ranging from noninvasive and surgically curable pilocytic astrocytomas to metastatic brain disease. The involvement of an interdisciplinary team, including neurosurgeons, radiation therapists, oncologists, neurologists, and neuroradiologists, is a key factor in the appropriate management of CNS cancers. Integrated histopathologic and molecular characterization of brain tumors such as gliomas should be standard practice. This article describes NCCN Guidelines recommendations for WHO grade I, II, III, and IV gliomas. Treatment of brain metastases, the most common intracranial tumors in adults, is also described.


Subject(s)
Astrocytoma , Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Adult , Astrocytoma/diagnosis , Astrocytoma/therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Central Nervous System , Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/therapy , Glioma/diagnosis , Glioma/therapy , Humans , Practice Guidelines as Topic
7.
Oncologist ; 24(6): 836-843, 2019 06.
Article in English | MEDLINE | ID: mdl-30126856

ABSTRACT

INTRODUCTION: Osimertinib is a third-generation tyrosine kinase inhibitor, initially approved for epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) with T790M acquired resistance, and now approved in the first-line setting. However, data supporting the use of osimertinib in untreated brain metastases are limited, although it has established central nervous system (CNS) activity. Our study compares the clinical outcomes of patients experiencing progressing brain metastases treated with cranial irradiation and osimertinib with those treated with osimertinib alone. METHODS: Forty patients who were treated with osimertinib at the Stanford Cancer Center from November 2015 to December 2016 were identified by searching an electronic medical record database. Eleven patients had progressing brain metastases and did not receive radiation (group A), 9 patients had progressing brain metastases and received radiation when starting osimertinib (group B), and 20 patients had stable brain metastases at the time of initiating osimertinib (group C). Patient and disease characteristics, radiographic responses, and survival outcomes were evaluated retrospectively for the three groups. RESULTS: The CNS response rate was 32.3%. Median time to treatment failure (TTF), overall progression-free survival (PFS), and overall survival (OS) were 10.0 months (95% confidence interval [CI], 4.5-11.8), 8.8 months (95% CI, 6.2-12.1), and 16.2 months, respectively. Median TTF was 15.1 months for group A (95% CI, 1.7-28.5), 7.7 months for group B (95% CI, 0-15.5), and 10.7 months for group C (95% CI, 9.0-12.5). The median PFS was 8.8 months for group A (95% CI, 4.3-13.4), not reached for group B, and 8.4 months for group C (95% CI, 5.6-11.1). The median OS was not reached for group A and C, and was 16.2 months for group B. There was no apparent difference in TTF, PFS, or OS between the three groups. CONCLUSION: Receiving radiation prior to starting osimertinib for patients with progressing brain metastases did not prolong TTF, PFS, or OS in our series. To minimize the risks of radiation-related toxicity, delaying radiation could be considered for some patients with EGFR-mutant NSCLC with brain metastases who initially respond to osimertinib in the second-line setting. IMPLICATIONS FOR PRACTICE: Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor recently approved for the first-line treatment of EGFR-mutant non-small cell lung cancer. Although it appears to have central nervous system (CNS) activity, most clinical trials have excluded patients with untreated, progressing brain metastases. This study included patients with stable and progressing CNS metastases treated with osimertinib and found no apparent differences in median time to treatment failure, time to progression, and overall survival in patients who received osimertinib alone compared with those who received osimertinib and radiosurgery. This may support a clinician's decision to defer radiation for selected patients with untreated brain metastases who are candidates for osimertinib therapy.


Subject(s)
Acrylamides/therapeutic use , Aniline Compounds/therapeutic use , Brain Neoplasms/therapy , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Protein Kinase Inhibitors/therapeutic use , Acrylamides/pharmacology , Adult , Aged , Aged, 80 and over , Aniline Compounds/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/secondary , Chemoradiotherapy/methods , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Follow-Up Studies , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Progression-Free Survival , Protein Kinase Inhibitors/pharmacology , Retrospective Studies
8.
Curr Treat Options Oncol ; 20(3): 24, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30790064

ABSTRACT

OPINION STATEMENT: At this time, there are no FDA-approved immune therapies for glioblastoma (GBM) despite many unique therapies currently in clinical trials. GBM is a highly immunosuppressive tumor and there are limitations to a safe immune response in the central nervous system. To date, there have been several failures of phase 3 immune therapy clinical trials in GBM. These trials have targeted single components of an antitumor immune response. Learning from these failures, the future of immunotherapy for GBM appears most hopeful for combination of immune therapies to overcome the profound immunosuppression of this disease. Understanding biomarkers for appropriate patient selection as well as tumor progression are necessary for implementation of immunotherapy for GBM.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Immunotherapy , Molecular Targeted Therapy , Biomarkers, Tumor , Brain Neoplasms/pathology , Cancer Vaccines , Clinical Trials as Topic , Glioblastoma/pathology , Humans , Immunotherapy/trends , Molecular Targeted Therapy/trends , Patient Selection , Prognosis , Treatment Outcome
9.
J Neurooncol ; 139(1): 135-143, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29623552

ABSTRACT

INTRODUCTION: Maximizing extent of surgical resection with the least morbidity remains critical for survival in glioblastoma patients, and we hypothesize that it can be improved by enhancements in intraoperative tumor detection. In a clinical study, we determined if therapeutic antibodies could be repurposed for intraoperative imaging during resection. METHODS: Fluorescently labeled cetuximab-IRDye800 was systemically administered to three patients 2 days prior to surgery. Near-infrared fluorescence imaging of tumor and histologically negative peri-tumoral tissue was performed intraoperatively and ex vivo. Fluorescence was measured as mean fluorescence intensity (MFI), and tumor-to-background ratios (TBRs) were calculated by comparing MFIs of tumor and histologically uninvolved tissue. RESULTS: The mean TBR was significantly higher in tumor tissue of contrast-enhancing (CE) tumors on preoperative imaging (4.0 ± 0.5) compared to non-CE tumors (1.2 ± 0.3; p = 0.02). The TBR was higher at a 100 mg dose than at 50 mg (4.3 vs. 3.6). The smallest detectable tumor volume in a closed-field setting was 70 mg with 50 mg of dye and 10 mg with 100 mg. On sections of paraffin embedded tissues, fluorescence positively correlated with histological evidence of tumor. Sensitivity and specificity of tumor fluorescence for viable tumor detection was calculated and fluorescence was found to be highly sensitive (73.0% for 50 mg dose, 98.2% for 100 mg dose) and specific (66.3% for 50 mg dose, 69.8% for 100 mg dose) for viable tumor tissue in CE tumors while normal peri-tumoral tissue showed minimal fluorescence. CONCLUSION: This first-in-human study demonstrates the feasibility and safety of antibody based imaging for CE glioblastomas.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Optical Imaging , Surgery, Computer-Assisted , Antineoplastic Agents, Immunological , Brain/diagnostic imaging , Brain/pathology , Brain/surgery , Brain Neoplasms/pathology , Cetuximab , Dose-Response Relationship, Drug , Fluorescent Dyes , Glioblastoma/pathology , Humans , Indoles , Optical Imaging/methods , Sensitivity and Specificity , Spectroscopy, Near-Infrared , Surgery, Computer-Assisted/methods
10.
J Natl Compr Canc Netw ; 15(11): 1331-1345, 2017 11.
Article in English | MEDLINE | ID: mdl-29118226

ABSTRACT

For many years, the diagnosis and classification of gliomas have been based on histology. Although studies including large populations of patients demonstrated the prognostic value of histologic phenotype, variability in outcomes within histologic groups limited the utility of this system. Nonetheless, histology was the only proven and widely accessible tool available at the time, thus it was used for clinical trial entry criteria, and therefore determined the recommended treatment options. Research to identify molecular changes that underlie glioma progression has led to the discovery of molecular features that have greater diagnostic and prognostic value than histology. Analyses of these molecular markers across populations from randomized clinical trials have shown that some of these markers are also predictive of response to specific types of treatment, which has prompted significant changes to the recommended treatment options for grade III (anaplastic) gliomas.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/analysis , Central Nervous System Neoplasms/diagnosis , Glioma/diagnosis , Nervous System/pathology , Antineoplastic Combined Chemotherapy Protocols/standards , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/therapy , Combined Modality Therapy/methods , Combined Modality Therapy/standards , Glioma/classification , Glioma/pathology , Glioma/therapy , Humans , Neoadjuvant Therapy/methods , Neoadjuvant Therapy/standards , Neoplasm Grading , Prognosis , Radiotherapy/methods , Radiotherapy/standards
11.
J Neurooncol ; 135(1): 99-105, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28667595

ABSTRACT

Compared to traditional chemotherapies, where dose limiting toxicities represent the maximum possible dose, monoclonal antibody therapies are used at doses well below maximum tolerated dose. However, there has been little effort to ascertain whether there is a submaximal dose at which the efficacy/complication ratio is maximized. Thus, despite the general practice of using Bevacizumab (BEV) at dosages of 10 mg/kg every other week for glioma patients, there has not been much prior work examining whether the relatively high complication rates reported with this agent can be decreased by lowering the dose without impairing efficacy. We assessed charts from 80 patients who received BEV for glioblastoma to survey the incidence of complications relative to BEV dose. All patients were treated with standard upfront chemoradiation. The toxicity was graded based on the NCI CTCAE, version 4.03. The rate of BEV serious related adverse events was 12.5% (n = 10/80). There were no serious adverse events (≥grade 3) when the administered dose was (<3 mg/kg/week), compared to a 21% incidence in those who received higher doses (≥3 mg/kg/week) (P < 0.01). Importantly, the three patient deaths attributable to BEV administration occurred in patients receiving higher doses. Patients who received lower doses also had a better survival rate, although this did not reach statistical significance [median OS 39 for low dose group vs. 17.3 for high dose group (P = 0.07)]. Lower rates of serious BEV related toxicities are noted when lower dosages are used without diminishing positive clinical impact. Further work aimed at optimizing BEV dosage is justified.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Bevacizumab/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Antineoplastic Agents, Immunological/toxicity , Bevacizumab/toxicity , Brain Neoplasms/epidemiology , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Chemoradiotherapy , Dose-Response Relationship, Drug , Female , Glioblastoma/epidemiology , Glioblastoma/pathology , Glioblastoma/radiotherapy , Humans , Incidence , Male , Middle Aged , Neoplasm Grading , Survival Analysis , Treatment Outcome
12.
J Neurooncol ; 132(3): 439-446, 2017 05.
Article in English | MEDLINE | ID: mdl-28271282

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is common, frequently limits chemotherapy dosing, and negatively impacts quality of life. The National Cancer Institute Common Toxicity Criteria for Adverse Events (CTCAE), version 4.0, and the Total Neuropathy Score clinical version (TNSc) are both validated scores to quantify peripheral neuropathy (PN), with the TNSc being more sensitive to clinical changes. Mycosis fungoides and Sézary syndrome (MF/SS) are characterized by a chronic course, where current therapies are generally non-curative and treatment toxicities have the potential for significant lasting effects. Brentuximab vedotin (BV) is an antibody-drug-conjugate composed of an anti-CD30 monoclonal antibody linked to the microtubule-disrupting agent, monomethyl auristatin E, with a known associated CIPN. In our phase II clinical trial of BV in MF/SS, 25 (69%) of 36 patients developed PN, with 18 (50%) developing Clinically Significant PN, CTCAE v4.0 grade 2 or higher. The median time to grade 2 PN was 15 weeks (range 0.4-48) after the initial dose. By Kaplan-Meier calculation, the median time to improvement from Clinically Significant PN was 30 weeks from the last BV dose. Seventy-four percent had improvement by 24 months. We found that TNSc scores significantly correlated with CTCAE grade, with Spearman correlation coefficient 0.68 (p < 0.001). By logistic regression, for each 100 mg increase in BV total dose, the likelihood of developing Clinically Significant PN increased by 23% (95% CI 4-46%). Improved monitoring of CIPN associated with BV is of paramount importance in the MF/SS population.


Subject(s)
Antineoplastic Agents/adverse effects , Immunoconjugates/adverse effects , Mycosis Fungoides/drug therapy , Peripheral Nervous System Diseases/chemically induced , Sezary Syndrome/drug therapy , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Brentuximab Vedotin , Female , Humans , Male , Middle Aged , Peripheral Nervous System Diseases/epidemiology , Young Adult
13.
Curr Treat Options Oncol ; 18(4): 22, 2017 04.
Article in English | MEDLINE | ID: mdl-28391420

ABSTRACT

OPINION STATEMENT: Management of non-small cell lung cancer (NSCLC) with brain metastasis (BrM) has been revolutionized by identification of molecular subsets that have targetable oncogenes. Historically, survival for NSCLC with symptomatic BrM was weeks to months. Now, many patients are surviving years with limited data to guide treatment decisions. Tumors with activating mutations in epidermal growth factor receptor (EGFRact+) have a higher incidence of BrM, but a longer overall survival. The high response rate of both systemic and BrM EGFRact+ NSCLC to tyrosine kinase inhibitors (TKIs) has led to the rapid incorporation of new therapies but is outpacing evidence-based decisions for BrM in NSCLC. While whole brain radiation therapy (WBRT) was the foundation of management of BrM, extended survival raises concerns for the subacute and late effects radiotherapy. We favor the use of TKIs and delaying the use of WBRT when able. At inevitable disease progression, we consider alternative dosing schedules to increase CNS penetration (such as pulse dosing of erlotinib) or advance to next generation TKI if available. We utilize local control options of surgery or stereotactic radiosurgery (SRS) for symptomatic accessible lesions based on size and edema. At progression despite available TKIs, we use pemetrexed-based platinum doublet chemotherapy or immunotherapy if the tumor has high expression of PDL-1. We reserve the use of WBRT for patients with more than 10 BrM and progression despite TKI and conventional chemotherapy, if performance status is appropriate.


Subject(s)
Brain Neoplasms/secondary , Brain Neoplasms/therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Brain Neoplasms/diagnosis , Clinical Trials as Topic , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Disease Management , ErbB Receptors/antagonists & inhibitors , Humans , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Treatment Outcome
14.
J Neurooncol ; 128(1): 93-100, 2016 05.
Article in English | MEDLINE | ID: mdl-26961773

ABSTRACT

Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAF (V600E) mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient's clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTEN (R130*) at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD.


Subject(s)
Brain Neoplasms/cerebrospinal fluid , DNA, Neoplasm/cerebrospinal fluid , Melanoma/cerebrospinal fluid , Meningeal Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Disease Progression , Humans , Male , Melanoma/genetics , Melanoma/pathology , Meningeal Neoplasms/cerebrospinal fluid , Meningeal Neoplasms/genetics , Middle Aged , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins B-raf/genetics
15.
Curr Neurol Neurosci Rep ; 16(3): 25, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26838352

ABSTRACT

The detection of tumor-derived circulating nucleic acids in patients with cancer, known as the "liquid biopsy," has expanded from use in plasma to other bodily fluids in an increasing number of malignancies. Circulating nucleic acids could be of particular use in central nervous system tumors as biopsy carries a 5-7 % risk of major morbidity. This application presents unique challenges that have limited the use of cell-free DNA and RNA in the diagnosis and monitoring of CNS tumors. Recent work suggests that cerebrospinal fluid may be a useful source of CNS tumor-derived circulating nucleic acids. In this review, we discuss the available data and future outlook on the use of the liquid biopsy for CNS tumors.


Subject(s)
Biomarkers, Tumor/analysis , Central Nervous System Neoplasms/chemistry , DNA, Neoplasm/analysis , RNA/analysis , Cell-Free System , Central Nervous System Neoplasms/genetics , DNA, Mitochondrial/analysis , Humans
16.
Radiology ; 277(2): 497-506, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25965900

ABSTRACT

PURPOSE: To prospectively evaluate fluorine 18 ((18)F) 2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid (RGD) peptide (PEG3-E[c{RGDyk}]2) (FPPRGD2) positron emission tomography (PET) in patients with glioblastoma multiforme (GBM). MATERIALS AND METHODS: The institutional review board approved this HIPAA-compliant protocol. Written informed consent was obtained from each patient. (18)F FPPRGD2 uptake was measured semiquantitatively in the form of maximum standardized uptake values (SUV(max)) and uptake volumes before and after treatment with bevacizumab. Vital signs and laboratory results were collected before, during, and after the examinations. A nonparametric version of multivariate analysis of variance was used to assess safety outcome measures simultaneously across time points. A paired two-sample t test was performed to compare SUV(max). RESULTS: A total of 17 participants (eight men, nine women; age range, 25-65 years) were enrolled prospectively. (18)F FPPRGD2 PET/computed tomography (CT), (18)F fluorodeoxyglucose (FDG) PET/CT, and brain magnetic resonance (MR) imaging were performed within 3 weeks, prior to the start of bevacizumab therapy. In eight of the 17 patients (47%), (18)F FPPRGD2 PET/CT was repeated 1 week after the start of bevacizumab therapy; six patients (35%) underwent (18)F FPPRGD2 PET/CT a third time 6 weeks after starting bevacizumab therapy. There were no changes in vital signs, electrocardiographic findings, or laboratory values that qualified as adverse events. One patient (6%) had recurrent GBM identified only on (18)F FPPRGD2 PET images, and subsequent MR images enabled confirmation of recurrence. Of the 17 patients, 14 (82%) had recurrent GBM identified on (18)F FPPRGD2 PET and brain MR images, while (18)F FDG PET enabled identification of recurrence in 13 (76%) patients. Two patients (12%) had no recurrent GBM. CONCLUSION: (18)F FPPRGD2 is a safe PET radiopharmaceutical that has increased uptake in GBM lesions. Larger cohorts are required to confirm these preliminary findings.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Multimodal Imaging , Neoplasm Recurrence, Local/diagnostic imaging , Peptides, Cyclic/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Adult , Aged , Brain Neoplasms/pathology , Female , Fluorine Radioisotopes/chemistry , Glioblastoma/pathology , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Positron-Emission Tomography , Tomography, X-Ray Computed
17.
Clin Chem ; 61(3): 514-22, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25605683

ABSTRACT

BACKGROUND: Detecting tumor-derived cell-free DNA (cfDNA) in the blood of brain tumor patients is challenging, presumably owing to the blood-brain barrier. Cerebral spinal fluid (CSF) may serve as an alternative "liquid biopsy" of brain tumors by enabling measurement of circulating DNA within CSF to characterize tumor-specific mutations. Many aspects about the characteristics and detectability of tumor mutations in CSF remain undetermined. METHODS: We used digital PCR and targeted amplicon sequencing to quantify tumor mutations in the cfDNA of CSF and plasma collected from 7 patients with solid brain tumors. Also, we applied cancer panel sequencing to globally characterize the somatic mutation profile from the CSF of 1 patient with suspected leptomeningeal disease. RESULTS: We detected tumor mutations in CSF samples from 6 of 7 patients with solid brain tumors. The concentration of the tumor mutant alleles varied widely between patients, from <5 to nearly 3000 copies/mL CSF. We identified 7 somatic mutations from the CSF of a patient with leptomeningeal disease by use of cancer panel sequencing, and the result was concordant with genetic testing on the primary tumor biopsy. CONCLUSIONS: Tumor mutations were detectable in cfDNA from the CSF of patients with different primary and metastatic brain tumors. We designed 2 strategies to characterize tumor mutations in CSF for potential clinical diagnosis: the targeted detection of known driver mutations to monitor brain metastasis and the global characterization of genomic aberrations to direct personalized cancer care.


Subject(s)
Brain Neoplasms/genetics , DNA, Neoplasm/genetics , DNA/genetics , Mutation , Brain Neoplasms/cerebrospinal fluid , DNA/blood , DNA/cerebrospinal fluid , DNA, Neoplasm/blood , DNA, Neoplasm/cerebrospinal fluid , Exome , Humans , Polymerase Chain Reaction/methods
18.
J Neurooncol ; 123(2): 277-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25935109

ABSTRACT

Patients with recurrence of high-grade glioma (HGG) after bevacizumab (BEV) have an extremely poor prognosis. Etirinotecan pegol (EP) is the first long-acting topoisomerase-I inhibitor designed to concentrate in and provide continuous tumor exposure throughout the entire chemotherapy cycle. Here we report results of a Phase 2, single arm, open-label trial evaluating EP in HGG patients who progressed after BEV. Patients age >18 with histologically proven anaplastic astrocytoma or glioblastoma (GB) who previously received standard chemo-radiation and recurred after BEV were eligible. A predicted life expectancy >6 weeks and KPS ≥ 50 were required. The primary endpoint was PFS at 6-weeks. Secondary endpoint was overall survival from first EP infusion. Response was assessed by RANO criteria. Single agent EP was administered IV every 3 weeks at 145 mg/m2. Patients did not receive BEV while on EP. 20 patients (90 % GB) were enrolled with a median age of 50 and median KPS of 70. Three patients with GB (16.7 % of GB) had partial MRI responses. 6-week PFS was 55 %. Median and 6-month PFS were 2.2 months (95 % CI 1.4-3.4 months) and 11.2 % (95 % CI 1.9-28.9 %) respectively. Median overall survival from first EP infusion was 4.5 months (95 % CI 2.4-5.9). Only one patient had grade 3 toxicity (diarrhea with dehydration) attributable to EP. Hematologic toxicity was mild. Three patients had confirmed partial responses according to RANO criteria. These clinical data combined with a favorable safety profile warrant further clinical investigation of this agent in HGG.


Subject(s)
Antineoplastic Agents/therapeutic use , Bevacizumab/pharmacology , Brain Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Glioma/drug therapy , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Polyethylene Glycols/therapeutic use , Adult , Aged , Angiogenesis Inhibitors/pharmacology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Female , Follow-Up Studies , Glioma/mortality , Glioma/pathology , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Pilot Projects , Prognosis , Prospective Studies , Survival Rate , Young Adult
20.
Front Oncol ; 14: 1402651, 2024.
Article in English | MEDLINE | ID: mdl-38826788

ABSTRACT

Introduction: CNSide is a platform that detects and characterizes tumor cells in the cerebrospinal fluid (CSF) of patients with leptomeningeal disease (LMD). The platform was validated per College of American Pathologists (CAP) and Clinical Laboratories Improvement Amendment (CLIA) guidelines and run as a commercial Laboratory Developed Test (LDT) at Biocept in San Diego, CA. The platform allows CSF tumor cell (CSF-TC) enumeration and biomarker characterization by fluorescent in situ hybridization (FISH). Methods: We performed a multicenter retrospective chart review of HER2 FISH CNSide test results that were commercially ordered on 26 patients by physicians for LMD breast cancer patients between April 2020 and October 2022. Results: We show that HER2 is amplified on CSF tumor cells in 62% (16/26) of LMD breast cancer patients. 10/26 (38%) patients had discordant HER2-positivity between the primary tumor tissue and CSF-TC; of these, 35% (9/26) of the patients displayed HER2 amplification on the CSF-TCs, however were categorized as HER2 negative on the primary tumor. Of the 27% (7/26) patients with a HER2 positive primary tumor, one patient showed a HER2 negative LMD tumor. Two patients, 8% (2/26) had a HER2 equivocal primary tumor; of these, one demonstrated a HER2 negative, and one a HER2 positive LMD tumor. Serial analysis (at least 4 longitudinal tests) of HER2 status of the CSF-TC throughout therapy was available for 14 patients and demonstrated that HER2 status of the LMD changed in 29% (4/14) during their treatment course and impacted care decisions. Conclusions: Our data suggests that CSF-TC HER2 FISH analysis in LMD breast cancer patients may be discordant to the primary tumor sample and the discovery of HER2 positivity in the CSF may open doors to anti-HER2 targeted therapy options for LMD patients.

SELECTION OF CITATIONS
SEARCH DETAIL