Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
PLoS Pathog ; 20(3): e1012085, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484009

ABSTRACT

Elaborate viral replication organelles (VROs) are formed to support positive-strand RNA virus replication in infected cells. VRO formation requires subversion of intracellular membranes by viral replication proteins. Here, we showed that the key ATG8f autophagy protein and NBR1 selective autophagy receptor were co-opted by Tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus. Knockdown of ATG8f or NBR1 in plants led to reduced tombusvirus replication, suggesting pro-viral function for selective autophagy. BiFC and proximity-labeling experiments showed that the TBSV p33 replication protein interacted with ATG8f and NBR1 to recruit them to VROs. In addition, we observed that several core autophagy proteins, such as ATG1a, ATG4, ATG5, ATG101 and the plant-specific SH3P2 autophagy adaptor proteins were also re-localized to TBSV VROs, suggesting that TBSV hijacks the autophagy machinery in plant cells. We demonstrated that subversion of autophagy components facilitated the recruitment of VPS34 PI3 kinase and enrichment of phospholipids, such as phosphatidylethanolamine and PI3P phosphoinositide in the VRO membranes. Hijacking of autophagy components into TBSV VROs led to inhibition of autophagic flux. We also found that a fraction of the subverted ATG8f and NBR1 was sequestered in biomolecular condensates associated with VROs. We propose that the VRO-associated condensates trap those autophagy proteins, taking them away from the autophagy pathway. Overall, tombusviruses hijack selective autophagy to provide phospholipid-rich membranes for replication and to regulate the antiviral autophagic flux.


Subject(s)
Tombusvirus , Tombusvirus/physiology , Saccharomyces cerevisiae/genetics , Intracellular Membranes/metabolism , Virus Replication/physiology , Phospholipids/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Autophagy , Organelles/metabolism , RNA, Viral/genetics
2.
PLoS Pathog ; 18(6): e1010653, 2022 06.
Article in English | MEDLINE | ID: mdl-35767596

ABSTRACT

Tombusviruses, similar to other (+)RNA viruses, exploit the host cells by co-opting numerous host components and rewiring cellular pathways to build extensive virus-induced replication organelles (VROs) in the cytosol of the infected cells. Most molecular resources are suboptimal in susceptible cells and therefore, tomato bushy stunt virus (TBSV) drives intensive remodeling and subversion of many cellular processes. The authors discovered that the nuclear centromeric CenH3 histone variant (Cse4p in yeast, CENP-A in humans) plays a major role in tombusvirus replication in plants and in the yeast model host. We find that over-expression of CenH3 greatly interferes with tombusvirus replication, whereas mutation or knockdown of CenH3 enhances TBSV replication in yeast and plants. CenH3 binds to the viral RNA and acts as an RNA chaperone. Although these data support a restriction role of CenH3 in tombusvirus replication, we demonstrate that by partially sequestering CenH3 into VROs, TBSV indirectly alters selective gene expression of the host, leading to more abundant protein pool. This in turn helps TBSV to subvert pro-viral host factors into replication. We show this through the example of hypoxia factors, glycolytic and fermentation enzymes, which are exploited more efficiently by tombusviruses to produce abundant ATP locally within the VROs in infected cells. Altogether, we propose that subversion of CenH3/Cse4p from the nucleus into cytosolic VROs facilitates transcriptional changes in the cells, which ultimately leads to more efficient ATP generation in situ within VROs by the co-opted glycolytic enzymes to support the energy requirement of virus replication. In summary, CenH3 plays both pro-viral and restriction functions during tombusvirus replication. This is a surprising novel role for a nuclear histone variant in cytosolic RNA virus replication.


Subject(s)
Tombusvirus , Adenosine Triphosphate/metabolism , Histones/metabolism , Host-Pathogen Interactions/genetics , Humans , Organelles , RNA, Viral/genetics , Saccharomyces cerevisiae/metabolism , Nicotiana , Tombusvirus/genetics , Tombusvirus/metabolism , Virus Replication/genetics
3.
New Phytol ; 243(5): 1917-1935, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38515267

ABSTRACT

Positive-strand RNA viruses co-opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co-opt pro-viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co-opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) - Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co-opted host proteins into droplets. VRO-associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co-opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid-liquid phase separation of co-opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co-exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs.


Subject(s)
Biomolecular Condensates , Cytosol , Nepovirus , Organelles , Tombusvirus , Viral Proteins , Virus Replication , Nepovirus/chemistry , Nepovirus/physiology , Cytosol/metabolism , Tombusvirus/chemistry , Tombusvirus/physiology , Viral Proteins/chemistry , Nicotiana/virology , Organelles/virology , Biomolecular Condensates/virology
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33376201

ABSTRACT

Biogenesis of viral replication organelles (VROs) is critical for replication of positive-strand RNA viruses. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) hijack the retromer to facilitate building VROs in the surrogate host yeast and in plants. Depletion of retromer proteins, which are needed for biogenesis of endosomal tubular transport carriers, strongly inhibits the peroxisome-associated TBSV and the mitochondria-associated CIRV replication in yeast and in planta. In vitro reconstitution revealed the need for the retromer for the full activity of the viral replicase. The viral p33 replication protein interacts with the retromer complex, including Vps26, Vps29, and Vps35. We demonstrate that TBSV p33-driven retargeting of the retromer into VROs results in delivery of critical retromer cargoes, such as 1) Psd2 phosphatidylserine decarboxylase, 2) Vps34 phosphatidylinositol 3-kinase (PI3K), and 3) phosphatidylinositol 4-kinase (PI4Kα-like). The recruitment of these cellular enzymes by the co-opted retromer is critical for de novo production and enrichment of phosphatidylethanolamine phospholipid, phosphatidylinositol-3-phosphate [PI(3)P], and phosphatidylinositol-4-phosphate [PI(4)P] phosphoinositides within the VROs. Co-opting cellular enzymes required for lipid biosynthesis and lipid modifications suggest that tombusviruses could create an optimized lipid/membrane microenvironment for efficient VRO assembly and protection of the viral RNAs during virus replication. We propose that compartmentalization of these lipid enzymes within VROs helps tombusviruses replicate in an efficient milieu. In summary, tombusviruses target a major crossroad in the secretory and recycling pathways via coopting the retromer complex and the tubular endosomal network to build VROs in infected cells.


Subject(s)
Vesicular Transport Proteins/metabolism , Virus Replication/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Host-Pathogen Interactions/genetics , Lipid Metabolism/physiology , Lipids/physiology , Peroxisomes/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism , RNA, Viral/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Tombusvirus/genetics , Tombusvirus/metabolism , Viral Proteins/metabolism , Viral Replication Compartments/metabolism , Viral Replication Compartments/physiology
5.
J Virol ; 96(12): e0016821, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35638821

ABSTRACT

Positive-strand RNA viruses build large viral replication organelles (VROs) with the help of coopted host factors. Previous works on tomato bushy stunt virus (TBSV) showed that the p33 replication protein subverts the actin cytoskeleton by sequestering the actin depolymerization factor, cofilin, to reduce actin filament disassembly and stabilize the actin filaments. Then, TBSV utilizes the stable actin filaments as "trafficking highways" to deliver proviral host factors into the protective VROs. In this work, we show that the cellular intrinsic restriction factors (CIRFs) also use the actin network to reach VROs and inhibit viral replication. Disruption of the actin filaments by expression of the Legionella RavK protease inhibited the recruitment of plant CIRFs, including the CypA-like Roc1 and Roc2 cyclophilins, and the antiviral DDX17-like RH30 DEAD box helicase into VROs. Conversely, temperature-sensitive actin and cofilin mutant yeasts with stabilized actin filaments reduced the levels of copurified CIRFs, including cyclophilins Cpr1, CypA, Cyp40-like Cpr7, cochaperones Sgt2, the Hop-like Sti1, and the RH30 helicase in viral replicase preparations. Dependence of the recruitment of both proviral and antiviral host factors into VROs on the actin network suggests that there is a race going on between TBSV and its host to exploit the actin network and ultimately to gain the upper hand during infection. We propose that, in the highly susceptible plants, tombusviruses efficiently subvert the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors via winning the recruitment race and overwhelming cellular defenses. IMPORTANCE Replication of positive-strand RNA viruses is affected by the recruitment of host components, which provide either proviral or antiviral functions during virus invasion of infected cells. The delivery of these host factors into the viral replication organelles (VROs), which represent the sites of viral RNA replication, depends on the cellular actin network. Using TBSV, we uncover a race between the virus and its host with the actin network as the central player. We find that in susceptible plants, tombusviruses exploit the actin network for rapid delivery of proviral host factors into VROs and ultimately overcome host restriction factors. In summary, this work demonstrates that the actin network plays a major role in determining the outcome of viral infections in plants.


Subject(s)
Actins , Antiviral Restriction Factors , Organelle Biogenesis , Tombusvirus , Virus Replication , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Carrier Proteins/metabolism , Cyclophilins/metabolism , DNA Viruses/genetics , RNA, Viral/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/virology , Saccharomyces cerevisiae Proteins , Tombusvirus/genetics , Tombusvirus/physiology , Viral Proteins/metabolism
6.
PLoS Pathog ; 17(6): e1009680, 2021 06.
Article in English | MEDLINE | ID: mdl-34161398

ABSTRACT

Positive-strand (+)RNA viruses take advantage of the host cells by subverting a long list of host protein factors and transport vesicles and cellular organelles to build membranous viral replication organelles (VROs) that support robust RNA replication. How RNA viruses accomplish major recruitment tasks of a large number of cellular proteins are intensively studied. In case of tomato bushy stunt virus (TBSV), a single viral replication protein, named p33, carries out most of the recruitment duties. Yet, it is currently unknown how the viral p33 replication protein, which is membrane associated, is capable of the rapid and efficient recruitment of numerous cytosolic host proteins to facilitate the formation of large VROs. In this paper, we show that, TBSV p33 molecules do not recruit each cytosolic host factor one-by-one into VROs, but p33 targets a cytosolic protein interaction hub, namely Rpn11, which interacts with numerous other cytosolic proteins. The highly conserved Rpn11, called POH1 in humans, is the metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates. However, TBSV takes advantage of a noncanonical function of Rpn11 by exploiting Rpn11's interaction with highly abundant cytosolic proteins and the actin network. We provide supporting evidence that the co-opted Rpn11 in coordination with the subverted actin network is used for delivering cytosolic proteins, such as glycolytic and fermentation enzymes, which are readily subverted into VROs to produce ATP locally in support of VRO formation, viral replicase complex assembly and viral RNA replication. Using several approaches, including knockdown of Rpn11 level, sequestering Rpn11 from the cytosol into the nucleus in plants or temperature-sensitive mutation in Rpn11 in yeast, we show the inhibition of recruitment of glycolytic and fermentation enzymes into VROs. The Rpn11-assisted recruitment of the cytosolic enzymes by p33, however, also requires the combined and coordinated role of the subverted actin network. Accordingly, stabilization of the actin filaments by expression of the Legionella VipA effector in yeast and plant, or via a mutation of ACT1 in yeast resulted in more efficient and rapid recruitment of Rpn11 and the selected glycolytic and fermentation enzymes into VROs. On the contrary, destruction of the actin filaments via expression of the Legionella RavK effector led to poor recruitment of Rpn11 and glycolytic and fermentation enzymes. Finally, we confirmed the key roles of Rpn11 and the actin filaments in situ ATP production within TBSV VROs via using a FRET-based ATP-biosensor. The novel emerging theme is that TBSV targets Rpn11 cytosolic protein interaction hub driven by the p33 replication protein and aided by the subverted actin filaments to deliver several co-opted cytosolic pro-viral factors for robust replication within VROs.


Subject(s)
Actin Cytoskeleton/metabolism , Endopeptidases/metabolism , Host-Pathogen Interactions/physiology , Tombusvirus/physiology , Virus Replication/physiology , Cytosol/metabolism , Proteasome Endopeptidase Complex/metabolism
7.
PLoS Pathog ; 17(3): e1009423, 2021 03.
Article in English | MEDLINE | ID: mdl-33725015

ABSTRACT

Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.


Subject(s)
Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Tombusvirus/physiology , Virus Replication/physiology , Saccharomyces cerevisiae/virology , Nicotiana/virology
8.
J Virol ; 95(21): e0107621, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34406861

ABSTRACT

Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.


Subject(s)
Nicotiana/virology , Organelles/virology , Saccharomyces cerevisiae/virology , Tombusvirus/physiology , Viral Proteins/metabolism , Virus Replication , rab GTP-Binding Proteins/physiology , 1-Phosphatidylinositol 4-Kinase/metabolism , Endosomes/metabolism , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/physiology , Host Microbial Interactions , Organelles/metabolism , Plant Diseases/virology , Protein Binding , Protein Transport , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Sorting Nexins/metabolism
9.
PLoS Pathog ; 16(12): e1009120, 2020 12.
Article in English | MEDLINE | ID: mdl-33370420

ABSTRACT

Positive-strand RNA viruses replicate in host cells by forming large viral replication organelles, which harbor numerous membrane-bound viral replicase complexes (VRCs). In spite of its essential role in viral replication, the biogenesis of the VRCs is not fully understood. The authors identified critical roles of cellular membrane-shaping proteins and PI(3)P (phosphatidylinositol 3-phosphate) phosphoinositide, a minor lipid with key functions in endosomal vesicle trafficking and autophagosome biogenesis, in VRC formation for tomato bushy stunt virus (TBSV). The authors show that TBSV co-opts the endosomal SNX-BAR (sorting nexin with Bin/Amphiphysin/Rvs- BAR domain) proteins, which bind to PI(3)P and have membrane-reshaping function during retromer tubular vesicle formation, directly into the VRCs to boost progeny viral RNA synthesis. We find that the viral replication protein-guided recruitment and pro-viral function of the SNX-BAR proteins depends on enrichment of PI(3)P at the site of viral replication. Depletion of SNX-BAR proteins or PI(3)P renders the viral double-stranded (ds)RNA replication intermediate RNAi-sensitive within the VRCs in the surrogate host yeast and in planta and ribonuclease-sensitive in cell-free replicase reconstitution assays in yeast cell extracts or giant unilamellar vesicles (GUVs). Based on our results, we propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately exploited by tombusviruses to promote VRC formation and to play structural roles and stabilize the VRCs during viral replication. Altogether, the interplay between the co-opted SNX-BAR membrane-shaping proteins, PI(3)P and the viral replication proteins leads to stable VRCs, which provide the essential protection of the viral RNAs against the host antiviral responses.


Subject(s)
Phosphatidylinositol Phosphates/metabolism , Sorting Nexins/metabolism , Tombusvirus/physiology , Viral Replicase Complex Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/virology , Cells, Cultured , Host-Pathogen Interactions/genetics , Organisms, Genetically Modified , Phosphatidylinositols/metabolism , Protein Interaction Domains and Motifs , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/physiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/virology , Sorting Nexins/chemistry , Sorting Nexins/physiology , Nicotiana/metabolism , Nicotiana/virology , Tombusvirus/genetics , Tombusvirus/metabolism , Viral Replicase Complex Proteins/physiology , Virus Replication/genetics
10.
PLoS Pathog ; 16(10): e1008990, 2020 10.
Article in English | MEDLINE | ID: mdl-33035275

ABSTRACT

Positive-stranded (+)RNA viruses greatly exploit host cells to support viral replication. However, unlike many other pathogens, (+)RNA viruses code for only a limited number of genes, making them highly dependent on numerous co-opted host factors for supporting viral replication and other viral processes during their infections. This excessive dependence on subverted host factors, however, renders (+)RNA viruses vulnerable to host restriction factors that could block virus replication. Interestingly, cellular ATP-dependent DEAD-box RNA helicases could promote or inhibit the replication of Tomato bushy stunt virus (TBSV) replication. However, it is currently unknown what features make a particular DEAD-box helicase either pro-viral or antiviral. In this work, we succeeded in reversing the viral function of the antiviral DDX17-like RH30 DEAD-box helicase by converting it to a pro-viral helicase. We also turned the pro-viral DDX3-like RH20 helicase into an antiviral helicase through deletion of a unique N-terminal domain. We demonstrate that in the absence of the N-terminal domain, the core helicase domain becomes unhinged, showing altered specificity in unwinding viral RNA duplexes containing cis-acting replication elements. The discovery of the sequence plasticity of DEAD-box helicases that can alter recognition of different cis-acting RNA elements in the viral genome illustrates the evolutionary potential of RNA helicases in the arms race between viruses and their hosts, including key roles of RNA helicases in plant innate immunity. Overall, these findings open up the possibility to turn the pro-viral host factors into antiviral factors, thus increasing the potential antiviral arsenal of the host for the benefit of agriculture and health science.


Subject(s)
DEAD-box RNA Helicases/metabolism , Tombusvirus/genetics , Virus Replication/physiology , Antiviral Agents/metabolism , DEAD-box RNA Helicases/physiology , Host-Pathogen Interactions/genetics , RNA Viruses/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Tombusvirus/metabolism , Virus Replication/genetics
11.
Proc Natl Acad Sci U S A ; 116(43): 21739-21747, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591191

ABSTRACT

Bacterial virulence factors or effectors are proteins targeted into host cells to coopt or interfere with cellular proteins and pathways. Viruses often coopt the same cellular proteins and pathways to support their replication in infected cells. Therefore, we screened the Legionella pneumophila effectors to probe virus-host interactions and identify factors that modulate tomato bushy stunt virus (TBSV) replication in yeast surrogate host. Among 302 Legionella effectors tested, 28 effectors affected TBSV replication. To unravel a coopted cellular pathway in TBSV replication, the identified DrrA effector from Legionella was further exploited. We find that expression of DrrA in yeast or plants blocks TBSV replication through inhibiting the recruitment of Rab1 small GTPase and endoplasmic reticulum-derived COPII vesicles into the viral replication compartment. TBSV hijacks Rab1 and COPII vesicles to create enlarged membrane surfaces and optimal lipid composition within the viral replication compartment. To further validate our Legionella effector screen, we used the Legionella effector LepB lipid kinase to confirm the critical proviral function of PI(3)P phosphoinositide and the early endosomal compartment in TBSV replication. We demonstrate the direct inhibitory activity of LegC8 effector on TBSV replication using a cell-free replicase reconstitution assay. LegC8 inhibits the function of eEF1A, a coopted proviral host factor. Altogether, the identified bacterial effectors with anti-TBSV activity could be powerful reagents in cell biology and virus-host interaction studies. This study provides important proof of concept that bacterial effector proteins can be a useful toolbox to identify host factors and cellular pathways coopted by (+)RNA viruses.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Legionella pneumophila/metabolism , Tombusvirus/growth & development , Virulence Factors/metabolism , rab1 GTP-Binding Proteins/metabolism , Agrobacterium tumefaciens/virology , COP-Coated Vesicles/virology , Legionella pneumophila/pathogenicity , Saccharomyces cerevisiae/virology , Nicotiana/virology , Tombusvirus/metabolism , Virus Replication/physiology
12.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: mdl-32641477

ABSTRACT

Positive-strand RNA [(+)RNA] viruses are important pathogens of humans, animals, and plants and replicate inside host cells by coopting numerous host factors and subcellular membranes. To gain insights into the assembly of viral replicase complexes (VRCs) and dissect the roles of various lipids and coopted host factors, we have reconstituted Tomato bushy stunt virus (TBSV) replicase using artificial giant unilamellar vesicles (GUVs). We demonstrate that reconstitution of VRCs on GUVs with endoplasmic reticulum (ER)-like phospholipid composition results in a complete cycle of replication and asymmetrical RNA synthesis, which is a hallmark of (+)RNA viruses. TBSV VRCs assembled on GUVs provide significant protection of the double-stranded RNA (dsRNA) replication intermediate against the dsRNA-specific RNase III. The lipid compositions of GUVs have pronounced effects on in vitro TBSV replication, including (-) and (+)RNA synthesis. The GUV-based assay has led to the discovery of the critical role of phosphatidylserine in TBSV replication and a novel role for phosphatidylethanolamine in asymmetrical (+)RNA synthesis. The GUV-based assay also showed stimulatory effects by phosphatidylinositol-3-phosphate [PI(3)P] and ergosterol on TBSV replication. We demonstrate that eEF1A and Hsp70 coopted replicase assembly factors, Vps34 phosphatidylinositol 3-kinase (PI3K) and the membrane-bending ESCRT factors, are required for reconstitution of the active TBSV VRCs in GUVs, further supporting that the novel GUV-based in vitro approach recapitulates critical steps and involves essential coopted cellular factors of the TBSV replication process. Taken together, this novel GUV assay will be highly suitable to dissect the functions of viral and cellular factors in TBSV replication.IMPORTANCE Understanding the mechanism of replication of positive-strand RNA viruses, which are major pathogens of plants, animals, and humans, can lead to new targets for antiviral interventions. These viruses subvert intracellular membranes for virus replication and coopt numerous host proteins, whose functions during virus replication are not yet completely defined. To dissect the roles of various host factors in Tomato bushy stunt virus (TBSV) replication, we have developed an artificial giant unilamellar vesicle (GUV)-based replication assay. The GUV-based in vitro approach recapitulates critical steps of the TBSV replication process. GUV-based reconstitution of the TBSV replicase revealed the need for a complex mixture of phospholipids, especially phosphatidylserine and phosphatidylethanolamine, in TBSV replication. The GUV-based approach will be useful to dissect the functions of essential coopted cellular factors.


Subject(s)
RNA, Double-Stranded/genetics , RNA-Dependent RNA Polymerase/genetics , Tombusvirus/genetics , Unilamellar Liposomes/metabolism , Viral Proteins/genetics , Biological Assay , Cell Line , Endoplasmic Reticulum/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Ergosterol/metabolism , Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Phosphatidylethanolamines/metabolism , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylserines/metabolism , Plant Cells/metabolism , Plant Cells/virology , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Nicotiana/cytology , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/virology , Tombusvirus/metabolism , Unilamellar Liposomes/chemistry , Viral Proteins/metabolism , Virus Replication
13.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32269127

ABSTRACT

Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.


Subject(s)
Host-Pathogen Interactions/genetics , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Tombusvirus/genetics , Virus Replication/genetics , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/virology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Endosomes/metabolism , Gene Expression Regulation , Phosphatidylethanolamines/genetics , Phosphatidylethanolamines/metabolism , Phosphoric Monoester Hydrolases/deficiency , Phosphoric Monoester Hydrolases/metabolism , Plant Cells/metabolism , Plant Cells/virology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/virology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protoplasts/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/virology , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Sterols/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/virology , Tombusvirus/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
14.
PLoS Pathog ; 15(5): e1007771, 2019 05.
Article in English | MEDLINE | ID: mdl-31136641

ABSTRACT

Positive-stranded RNA viruses replicate inside cells and depend on many co-opted cellular factors to complete their infection cycles. To combat viruses, the hosts use conserved restriction factors, such as DEAD-box RNA helicases, which can function as viral RNA sensors or as effectors by blocking RNA virus replication. In this paper, we have established that the plant DDX17-like RH30 DEAD-box helicase conducts strong inhibitory function on tombusvirus replication when expressed in plants and yeast surrogate host. The helicase function of RH30 was required for restriction of tomato bushy stunt virus (TBSV) replication. Knock-down of RH30 levels in Nicotiana benthamiana led to increased TBSV accumulation and RH30 knockout lines of Arabidopsis supported higher level accumulation of turnip crinkle virus. We show that RH30 DEAD-box helicase interacts with p33 and p92pol replication proteins of TBSV, which facilitates targeting of RH30 from the nucleus to the large TBSV replication compartment consisting of aggregated peroxisomes. Enrichment of RH30 in the nucleus via fusion with a nuclear retention signal at the expense of the cytosolic pool of RH30 prevented the re-localization of RH30 into the replication compartment and canceled out the antiviral effect of RH30. In vitro replicase reconstitution assay was used to demonstrate that RH30 helicase blocks the assembly of viral replicase complex, the activation of the RNA-dependent RNA polymerase function of p92pol and binding of p33 replication protein to critical cis-acting element in the TBSV RNA. Altogether, these results firmly establish that the plant DDX17-like RH30 DEAD-box helicase is a potent, effector-type, restriction factor of tombusviruses and related viruses. The discovery of the antiviral role of RH30 DEAD-box helicase illustrates the likely ancient roles of RNA helicases in plant innate immunity.


Subject(s)
Antiviral Agents/pharmacology , DEAD-box RNA Helicases/pharmacology , Nicotiana/virology , Plant Proteins/metabolism , Tombusvirus/drug effects , Viral Proteins/metabolism , Virus Replication/drug effects , Arabidopsis/metabolism , Arabidopsis/virology , Host-Pathogen Interactions , Plant Diseases/virology , Plant Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Nicotiana/drug effects , Nicotiana/metabolism , Tombusvirus/physiology , Viral Proteins/genetics , Virus Assembly/drug effects
15.
PLoS Pathog ; 15(1): e1007530, 2019 01.
Article in English | MEDLINE | ID: mdl-30625229

ABSTRACT

Tombusviruses depend on subversions of multiple host factors and retarget cellular pathways to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) recruit the cellular Vps34 phosphatidylinositol 3-kinase (PI3K) into the large viral replication compartment. The kinase function of Vps34 is critical for TBSV replication, suggesting that PI(3)P phosphoinositide is utilized by TBSV for building of the replication compartment. We also observed increased expression of Vps34 and the higher abundance of PI(3)P in the presence of the tombusviral replication proteins, which likely leads to more efficient tombusvirus replication. Accordingly, overexpression of PI(3)P phosphatase in yeast or plants inhibited TBSV replication on the peroxisomal membranes and CIRV replication on the mitochondrial membranes. Moreover, the purified PI(3)P phosphatase reduced TBSV replicase assembly in a cell-free system. Detection of PI(3)P with antibody or a bioprobe revealed the enrichment of PI(3)P in the replication compartment. Vps34 is directly recruited into the replication compartment through interaction with p33 replication protein. Gene deletion analysis in surrogate yeast host unraveled that TBSV replication requires the vesicle transport function of Vps34. In the absence of Vps34, TBSV cannot efficiently recruit the Rab5-positive early endosomes, which provide PE-rich membranes for membrane biogenesis of the TBSV replication compartment. We found that Vps34 and PI(3)P needed for the stability of the p33 replication protein, which is degraded by the 26S proteasome when PI(3)P abundance was decreased by an inhibitor of Vps34. In summary, Vps34 and PI(3)P are needed for providing the optimal microenvironment for the replication of the peroxisomal TBSV and the mitochondrial CIRV.


Subject(s)
Class III Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Tombusvirus/genetics , Class III Phosphatidylinositol 3-Kinases/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Peroxisomes/metabolism , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositols , RNA Viruses/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Tombusvirus/metabolism , Viral Proteins/metabolism , Virus Replication/genetics
16.
PLoS Pathog ; 15(10): e1008092, 2019 10.
Article in English | MEDLINE | ID: mdl-31648290

ABSTRACT

The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication.


Subject(s)
Alcohol Dehydrogenase/metabolism , Pyruvate Decarboxylase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/virology , Tombusvirus/growth & development , Virus Replication/physiology , Adenosine Triphosphate/biosynthesis , Fermentation/physiology , Glycolysis/physiology , HSP70 Heat-Shock Proteins/metabolism , Host-Pathogen Interactions/physiology , NAD/metabolism , RNA, Viral/biosynthesis , Saccharomyces cerevisiae/metabolism , Nicotiana/virology , Tombusvirus/genetics , Virus Replication/genetics
17.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31597780

ABSTRACT

Recombination is one of the driving forces of viral evolution. RNA recombination events among similar RNA viruses are frequent, although RNA recombination could also take place among unrelated viruses. In this paper, we have established efficient interviral recombination systems based on yeast and plants. We show that diverse RNA viruses, including the plant viruses tomato bushy stunt virus, carnation Italian ringspot virus, and turnip crinkle virus-associated RNA; the insect plus-strand RNA [(+)RNA] viruses Flock House virus and Nodamura virus; and the double-stranded L-A virus of yeast, are involved in interviral recombination events. Most interviral recombinants are minus-strand recombinant RNAs, and the junction sites are not randomly distributed, but there are certain hot spot regions. Formation of interviral recombinants in yeast and plants is accelerated by depletion of the cellular SERCA-like Pmr1 ATPase-driven Ca2+/Mn2+ pump, regulating intracellular Ca2+ and Mn2+ influx into the Golgi apparatus from the cytosol. The interviral recombinants are generated by a template-switching mechanism during RNA replication by the viral replicase. Replication studies revealed that a group of interviral recombinants is replication competent in cell-free extracts, in yeast, and in the plant Nicotiana benthamiana We propose that there are major differences among the viral replicases to generate and maintain interviral recombinants. Altogether, the obtained data promote the model that host factors greatly contribute to the formation of recombinants among related and unrelated viruses. This is the first time that a host factor's role in affecting interviral recombination is established.IMPORTANCE Viruses with RNA genomes are abundant, and their genomic sequences show astonishing variation. Genetic recombination in RNA viruses is a major force behind their rapid evolution, enhanced pathogenesis, and adaptation to their hosts. We utilized a previously identified intracellular Ca2+/Mn2+ pump-deficient yeast to search for interviral recombinants. Noninfectious viral replication systems were used to avoid generating unwanted infectious interviral recombinants. Altogether, interviral RNA recombinants were observed between plant and insect viruses, and between a fungal double-stranded RNA (dsRNA) virus and an insect virus, in the yeast host. In addition, interviral recombinants between two plant virus replicon RNAs were identified in N. benthamiana plants, in which the intracellular Ca2+/Mn2+ pump was depleted. These findings underline the crucial role of the host in promoting RNA recombination among unrelated viruses.


Subject(s)
Calcium-Transporting ATPases/genetics , Carmovirus/genetics , Molecular Chaperones/genetics , Nodaviridae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Tombusvirus/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Calcium/metabolism , Calcium-Transporting ATPases/deficiency , Carmovirus/metabolism , Cations, Divalent , Cell-Free System/chemistry , Cell-Free System/metabolism , Cell-Free System/virology , Ion Transport , Manganese/metabolism , Nodaviridae/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombination, Genetic , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/virology , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/virology , Tombusvirus/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
18.
PLoS Pathog ; 14(5): e1007028, 2018 05.
Article in English | MEDLINE | ID: mdl-29746582

ABSTRACT

Positive-strand RNA viruses assemble numerous membrane-bound viral replicase complexes within large replication compartments to support their replication in infected cells. Yet the detailed mechanism of how given subcellular compartments are subverted by viruses is incompletely understood. Although, Tomato bushy stunt virus (TBSV) uses peroxisomal membranes for replication, in this paper, we show evidence that the ER-resident SNARE (soluble NSF attachment protein receptor) proteins play critical roles in the formation of active replicase complexes in yeast model host and in plants. Depletion of the syntaxin 18-like Ufe1 and Use1, which are components of the ER SNARE complex in the ERAS (ER arrival site) subdomain, in yeast resulted in greatly reduced tombusvirus accumulation. Over-expression of a dominant-negative mutant of either the yeast Ufe1 or the orthologous plant Syp81 syntaxin greatly interferes with tombusvirus replication in yeast and plants, thus further supporting the role of this host protein in tombusvirus replication. Moreover, tombusvirus RNA replication was low in cell-free extracts from yeast with repressed Ufe1 or Use1 expression. We also present evidence for the mislocalization of the tombusviral p33 replication protein to the ER membrane in Ufe1p-depleted yeast cells. The viral p33 replication protein interacts with both Ufe1p and Use1p and co-opts them into the TBSV replication compartment in yeast and plant cells. The co-opted Ufe1 affects the virus-driven membrane contact site formation, sterol-enrichment at replication sites, recruitment of several pro-viral host factors and subversion of the Rab5-positive PE-rich endosomes needed for robust TBSV replication. In summary, we demonstrate a critical role for Ufe1 and Use1 SNARE proteins in TBSV replication and propose that the pro-viral functions of Ufe1 and Use1 are to serve as assembly hubs for the formation of the extensive TBSV replication compartments in cells. Altogether, these findings point clearly at the ERAS subdomain of ER as a critical site for the biogenesis of the TBSV replication compartment.


Subject(s)
SNARE Proteins/metabolism , SNARE Proteins/physiology , Tombusvirus/physiology , DNA Replication , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/physiology , Endosomes/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Mitochondrial Membranes/metabolism , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/physiology , Qc-SNARE Proteins/metabolism , Qc-SNARE Proteins/physiology , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Tombusvirus/genetics , Tombusvirus/metabolism , Tombusvirus/pathogenicity , Viral Proteins/genetics , Virus Replication/physiology
19.
J Cell Sci ; 130(1): 260-268, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27026525

ABSTRACT

Positive-strand RNA viruses, which can be devastating pathogens in humans, animals and plants, replicate their genomes on intracellular membranes. Here, we describe the three-dimensional ultrastructural organization of a tombusvirus replicase in yeast, a valuable model for exploring virus-host interactions. We visualized the intracellular distribution of a viral replicase protein using metal-tagging transmission electron microscopy, a highly sensitive nanotechnology whose full potential remains to be developed. These three-dimensional images show how viral replicase molecules are organized when they are incorporated into the active domains of the intracellular replication compartment. Our approach provides a means to study protein activation mechanisms in cells and to identify targets for new antiviral compounds.


Subject(s)
Imaging, Three-Dimensional , Intracellular Space/virology , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Tombusvirus/physiology , Virus Assembly , Antibodies/metabolism , Metallothionein/metabolism , Models, Biological , RNA, Double-Stranded/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae/virology , Tombusvirus/ultrastructure , Tomography , Virus Replication
20.
PLoS Pathog ; 13(7): e1006520, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28759634

ABSTRACT

Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , RNA Interference , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/virology , Tombusvirus/genetics , Endosomal Sorting Complexes Required for Transport/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism , Saccharomyces/genetics , Saccharomyces/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Tombusvirus/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL