Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 306(8): G699-710, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24578340

ABSTRACT

Selective inhibitors of myosin or actin function and confocal microscopy were used to test the role of an actomyosin complex in controlling morphology, trafficking, and fusion of tubulovesicles (TV) containing H-K-ATPase with the apical secretory canaliculus (ASC) of primary-cultured rabbit gastric parietal cells. In resting cells, myosin IIB and IIC, ezrin, and F-actin were associated with ASC, whereas H-K-ATPase localized to intracellular TV. Histamine caused fusion of TV with ASC and subsequent expansion resulting from HCl and water secretion; F-actin and ezrin remained associated with ASC whereas myosin IIB and IIC appeared to dissociate from ASC and relocalize to the cytoplasm. ML-7 (inhibits myosin light chain kinase) caused ASC of resting cells to collapse and most myosin IIB, F-actin, and ezrin to dissociate from ASC. TV were unaffected by ML-7. Jasplakinolide (stabilizes F-actin) caused ASC to develop large blebs to which actin, myosin II, and ezrin, as well as tubulin, were prominently localized. When added prior to stimulation, ML-7 and jasplakinolide prevented normal histamine-stimulated transformations of ASC/TV and the cytoskeleton, but they did not affect cells that had been previously stimulated with histamine. These results indicate that dynamic pools of actomyosin are required for maintenance of ASC structure in resting cells and for trafficking of TV to ASC during histamine stimulation. However, the dynamic pools of actomyosin are not required once the histamine-stimulated transformation of TV/ASC and cytoskeleton has occurred. These results also show that vesicle trafficking in parietal cells shares mechanisms with similar processes in renal collecting duct cells, neuronal synapses, and skeletal muscle.


Subject(s)
Actins/metabolism , Nonmuscle Myosin Type IIB/metabolism , Parietal Cells, Gastric , Transport Vesicles , Animals , Azepines/pharmacology , Biological Transport/drug effects , Biological Transport/physiology , Cell Physiological Phenomena/drug effects , Cells, Cultured , Enzyme Inhibitors/pharmacology , H(+)-K(+)-Exchanging ATPase/metabolism , Naphthalenes/pharmacology , Parietal Cells, Gastric/metabolism , Parietal Cells, Gastric/pathology , Rabbits , Transport Vesicles/drug effects , Transport Vesicles/physiology
2.
Am J Physiol Cell Physiol ; 303(12): C1301-11, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23099641

ABSTRACT

In primary culture, the gastric parietal cell's deeply invaginated apical membrane, seen in microscopy by phalloidin binding to F-actin (concentrated in microvilli and a subapical web), is engulfed into the cell, separated from the basolateral membrane (which then becomes the complete plasma membrane), and converted, from a lacy interconnected system of canaliculi, into several separate vacuoles. In this study, vacuolar morphology was achieved by 71% of parietal cells 8 h after typical collagenase digestion of rabbit gastric mucosa, but the tight-junctional protein zonula occludens-1 (ZO-1) was completely delocalized after ∼2 h, when cells were ready for culturing. Use of low-Ca(2+) medium (4 mM EGTA) to release cells quickly from gastric glands yielded parietal cells in which ZO-1 was seen in a small spot or ring, a localization quickly lost if these cells were then cultured in normal Ca(2+) but remaining up to 20 h if they were cultured in low Ca(2+). The cells in low Ca(2+) mostly retained, at 20 h, an intermediate morphology of many bulbous canalicular expansions ("prevacuoles"), seemingly with narrow interconnections. Histamine stimulation of 20-h cells with intermediate morphology caused colocalization of proton-pumping H-K-ATPase with canaliculi and prevacuoles but little swelling of those structures, consistent with a remaining apical pore through which secreted acid could escape. Apparent canalicular interconnections, lack of stimulated swelling, and lingering ZO-1 staining indicate inhibition of membrane fission processes that separate apical from basolateral membrane and vacuoles from each other, suggesting an important role for extracellular Ca(2+) in these, and possibly other, endocytotic processes.


Subject(s)
Calcium/pharmacology , Parietal Cells, Gastric/cytology , Vacuoles/metabolism , Animals , Cells, Cultured , H(+)-K(+)-Exchanging ATPase/metabolism , Histamine/pharmacology , Microvilli/metabolism , Parietal Cells, Gastric/drug effects , Parietal Cells, Gastric/metabolism , Rabbits , Vacuoles/drug effects , Zonula Occludens-1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL