Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
MAGMA ; 34(3): 437-450, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33048262

ABSTRACT

OBJECTIVE: In this perfusion magnetic resonance imaging study, the performances of different pseudo-continuous arterial spin labeling (PCASL) sequences were compared: two-dimensional (2D) single-shot readout with simultaneous multislice (SMS), 2D single-shot echo-planar imaging (EPI) and multishot three-dimensional (3D) gradient and spin echo (GRASE) sequences combined with a background-suppression (BS) module. MATERIALS AND METHODS: Whole-brain PCASL images were acquired from seven healthy volunteers. The performance of each protocol was evaluated by extracting regional cerebral blood flow (rCBF) measures using an inline morphometric segmentation prototype. Image data postprocessing and subsequent statistical analyses enabled comparisons at the regional and sub-regional levels. RESULTS: The main findings were as follows: (i) Mean global CBF obtained across methods was were highly correlated, and these correlations were significantly higher among the same readout sequences. (ii) Temporal signal-to-noise ratio and gray-matter-to-white-matter CBF ratio were found to be equivalent for all 2D variants but lower than those of 3D-GRASE. DISCUSSION: Our study demonstrates that the accelerated SMS readout can provide increased acquisition efficiency and/or a higher temporal resolution than conventional 2D and 3D readout sequences. Among all of the methods, 3D-GRASE showed the lowest variability in CBF measurements and thus highest robustness against noise.


Subject(s)
Imaging, Three-Dimensional , Brain , Cerebrovascular Circulation , Echo-Planar Imaging , Humans , Magnetic Resonance Angiography , Spin Labels
2.
Magn Reson Imaging Clin N Am ; 29(4): 617-630, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34717849

ABSTRACT

Magnetic resonance elastography (MRE) is an emerging noninvasive technique, an alternative to palpation for quantitative assessment of biomechanical properties of tissue. In MRE, tissue stiffness information is obtained by a 3-step process, propagating mechanical waves in the tissues, measuring the wave propagation using modified magnetic resonance (MR) pulse sequences, and generating the quantitative stiffness maps from the MR images. MRE is clinically used in patients with liver diseases, whereas its applications in other organs are still being investigated. At present, the pediatric studies are in the initial stage and preliminary results promise to provide additional information about tissue characteristics.


Subject(s)
Elasticity Imaging Techniques , Liver Diseases , Brain/diagnostic imaging , Child , Humans , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL