Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 616(7956): 339-347, 2023 04.
Article in English | MEDLINE | ID: mdl-36991126

ABSTRACT

There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a highly lethal malignancy with increasing incidence1 and poor prognosis2. Although targeting tumour metabolism has been the focus of intense investigation for more than a decade, tumour metabolic plasticity and high risk of toxicity have limited this anticancer strategy3,4. Here we use genetic and pharmacological approaches in human and mouse in vitro and in vivo models to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine. We find that this process, which is mediated through ornithine aminotransferase (OAT), supports polyamine synthesis and is required for tumour growth. This directional OAT activity is usually largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginine-derived ornithine for polyamine synthesis5,6. This dependency associates with arginine depletion in the PDA tumour microenvironment and is driven by mutant KRAS. Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to alterations in the transcriptome and open chromatin landscape in PDA tumour cells. The distinct dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.


Subject(s)
Ornithine-Oxo-Acid Transaminase , Pancreatic Neoplasms , Polyamines , Animals , Humans , Mice , Arginine/deficiency , Arginine/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Ornithine/biosynthesis , Ornithine/metabolism , Ornithine-Oxo-Acid Transaminase/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Polyamines/metabolism , Tumor Microenvironment
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33653947

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify nongenetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Glutamate-Ammonia Ligase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Enzyme Stability , Glutamate-Ammonia Ligase/genetics , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Neoplasm Proteins/genetics , Pancreatic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL