Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Nature ; 630(8017): 643-647, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898295

ABSTRACT

Electrified solid-liquid interfaces (ESLIs) play a key role in various electrochemical processes relevant to energy1-5, biology6 and geochemistry7. The electron and mass transport at the electrified interfaces may result in structural modifications that markedly influence the reaction pathways. For example, electrocatalyst surface restructuring during reactions can substantially affect the catalysis mechanisms and reaction products1-3. Despite its importance, direct probing the atomic dynamics of solid-liquid interfaces under electric biasing is challenging owing to the nature of being buried in liquid electrolytes and the limited spatial resolution of current techniques for in situ imaging through liquids. Here, with our development of advanced polymer electrochemical liquid cells for transmission electron microscopy (TEM), we are able to directly monitor the atomic dynamics of ESLIs during copper (Cu)-catalysed CO2 electroreduction reactions (CO2ERs). Our observation reveals a fluctuating liquid-like amorphous interphase. It undergoes reversible crystalline-amorphous structural transformations and flows along the electrified Cu surface, thus mediating the crystalline Cu surface restructuring and mass loss through the interphase layer. The combination of real-time observation and theoretical calculations unveils an amorphization-mediated restructuring mechanism resulting from charge-activated surface reactions with the electrolyte. Our results open many opportunities to explore the atomic dynamics and its impact in broad systems involving ESLIs by taking advantage of the in situ imaging capability.

2.
Nature ; 606(7916): 896-901, 2022 06.
Article in English | MEDLINE | ID: mdl-35676485

ABSTRACT

The observation of the Higgs boson solidified the standard model of particle physics. However, explanations of anomalies (for example, dark matter) rely on further symmetry breaking, calling for an undiscovered axial Higgs mode1. The Higgs mode was also seen in magnetic, superconducting and charge density wave (CDW) systems2,3. Uncovering the vector properties of a low-energy mode is challenging, and requires going beyond typical spectroscopic or scattering techniques. Here we discover an axial Higgs mode in the CDW system RTe3 using the interference of quantum pathways. In RTe3 (R = La, Gd), the electronic ordering couples bands of equal or different angular momenta4-6. As such, the Raman scattering tensor associated with the Higgs mode contains both symmetric and antisymmetric components, which are excited via two distinct but degenerate pathways. This leads to constructive or destructive interference of these pathways, depending on the choice of the incident and Raman-scattered light polarization. The qualitative behaviour of the Raman spectra is well captured by an appropriate tight-binding model, including an axial Higgs mode. Elucidation of the antisymmetric component is direct evidence that the Higgs mode contains an axial vector representation (that is, a pseudo-angular momentum) and hints that the CDW is unconventional. Thus, we provide a means for measuring quantum properties of collective modes without resorting to extreme experimental conditions.

3.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717626

ABSTRACT

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

4.
J Phys Chem A ; 128(4): 799-806, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38253010

ABSTRACT

The generation and control of entanglement in a quantum mechanical system are critical elements of nearly all quantum applications. Molecular systems are promising candidates, with numerous degrees of freedom able to be targeted. However, knowledge of intersystem entanglement mechanisms in such systems is limited. In this work, we demonstrate the generation of entanglement between vibrational degrees of freedom in molecules via strong coupling to a cavity mode driven by a weak coherent field. In a bimolecular system, we show that entanglement can be generated not only between the cavity and molecular system but also between molecules. This process also results in the generation of nonclassical states of light, providing potential pathways for harnessing entanglement in molecular systems.

5.
Nano Lett ; 23(3): 1068-1076, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36637381

ABSTRACT

The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.

6.
Phys Rev Lett ; 130(19): 196001, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243633

ABSTRACT

A recent experiment showed that a proximity-induced Ising spin-orbit coupling enhances the spin-triplet superconductivity in Bernal bilayer graphene. Here, we show that, due to the nearly perfect spin rotation symmetry of graphene, the fluctuations of the spin orientation of the triplet order parameter suppress the superconducting transition to nearly zero temperature. Our analysis shows that both an Ising spin-orbit coupling and an in-plane magnetic field can eliminate these low-lying fluctuations and can greatly enhance the transition temperature, consistent with the recent experiment. Our model also suggests the possible existence of a phase at small anisotropy and magnetic field which exhibits quasilong-range ordered spin-singlet charge 4e superconductivity, even while the triplet 2e superconducting order only exhibits short-ranged correlations. Finally, we discuss relevant experimental signatures.

7.
Chem Rev ; 121(5): 3061-3120, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33326218

ABSTRACT

Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.

8.
J Am Chem Soc ; 144(32): 14657-14667, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35921553

ABSTRACT

Recently, moiré superlattices of twisted van der Waals (vdW) materials have attracted substantial interest due to their strongly correlated properties. However, the vdW interlayer interaction is intrinsically weak, such that many desired properties can only exist at low temperature. Here, we theoretically predict some unusual properties stemming from the chemical bonding between twisted PbS nanosheets as an example of non-vdW moiré superlattices. The strong interlayer coupling in such systems results in giant strain vortices and dipole vortices at the interface. The modified electronic structures become a series of dispersionless bands and artificial-atom states. In real space, these states are analogous to arrays of well-positioned quantum dots, which may be promising for use in single-electron devices. In theory, if the materials are doped with a low concentration of electrons, a Wigner crystal will form even without any magnetic field. To confirm the accessibility and stability of non-vdW moiré superlattices in experiment, we synthesized PbS moiré superlattices with different twist angles. Our transmission-electron-microscope observations reveal the resemblance of the small-angle-twisted structures with the square matrices of quantum dots, which is in good accordance with our calculations.

9.
Nat Mater ; 20(3): 293-300, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33139890

ABSTRACT

The study of topology as it relates to physical systems has rapidly accelerated during the past decade. Critical to the realization of new topological phases is an understanding of the materials that exhibit them and precise control of the materials chemistry. The convergence of new theoretical methods using symmetry indicators to identify topological material candidates and the synthesis of high-quality single crystals plays a key role, warranting discussion and context at an accessible level. This Perspective provides a broad introduction to topological phases, their known properties, and material realizations. We focus on recent work in topological Weyl and Dirac semimetals, with a particular emphasis on magnetic Weyl semimetals and emergent fermions in chiral crystals and their extreme responses to excitations, and we highlight areas where the field can continue to make remarkable discoveries. We further examine open questions and directions for the topological materials science community to pursue, including exploration of non-equilibrium properties of Weyl semimetals and cavity-dressed topological materials.

10.
Phys Rev Lett ; 129(23): 237002, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36563226

ABSTRACT

We study the electrodynamics of spin triplet superconductors including dipolar interactions, which give rise to an interplay between the collective spin dynamics of the condensate and orbital Meissner screening currents. Within this theory, we identify a class of spin waves that originate from the coupled dynamics of the spin-symmetry breaking triplet order parameter and the electromagnetic field. In particular, we study magnetostatic spin wave modes that are localized to the sample surface. We show that these surface modes can be excited and detected using experimental techniques such as microwave spin wave resonance spectroscopy or nitrogen-vacancy magnetometry, and propose that the detection of these modes offers a means for the identification of spin triplet superconductivity.

11.
Nano Lett ; 21(12): 5098-5104, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34101474

ABSTRACT

Two-dimensional (2D) materials are able to strongly confine light hybridized with collective excitations of atoms, enabling electric-field enhancements and novel spectroscopic applications. Recently, freestanding monolayers of perovskite oxides have been synthesized, which possess highly infrared-active phonon modes and a complex interplay of competing interactions. Here, we show that this new class of 2D materials exhibits highly confined phonon polaritons by evaluating central figures of merit for phonon polaritons in the tetragonal phases of the 2D perovskites SrTiO3, KTaO3, and LiNbO3, using density functional theory calculations. Specifically, we compute the 2D phonon-polariton dispersions, the propagation-quality, confinement, and deceleration factors, and we show that they are comparable to those found in the prototypical 2D dielectric hexagonal boron nitride. Our results suggest that monolayers of perovskite oxides are promising candidates for polaritonic platforms that enable new possibilities in terms of tunability and spectral ranges.

12.
Nat Mater ; 19(5): 534-539, 2020 May.
Article in English | MEDLINE | ID: mdl-32094492

ABSTRACT

Defects in hexagonal boron nitride (hBN) exhibit high-brightness, room-temperature quantum emission, but their large spectral variability and unknown local structure challenge their technological utility. Here, we directly correlate hBN quantum emission with local strain using a combination of photoluminescence (PL), cathodoluminescence (CL) and nanobeam electron diffraction. Across 40 emitters, we observe zero phonon lines (ZPLs) in PL and CL ranging from 540 to 720 nm. CL mapping reveals that multiple defects and distinct defect species located within an optically diffraction-limited region can each contribute to the observed PL spectra. Local strain maps indicate that strain is not required to activate the emitters and is not solely responsible for the observed ZPL spectral range. Instead, at least four distinct defect classes are responsible for the observed emission range, and all four classes are stable upon both optical and electron illumination. Our results provide a foundation for future atomic-scale optical characterization of colour centres.

13.
Nat Mater ; 19(8): 867-873, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32152562

ABSTRACT

The electronic, optical and chemical properties of two-dimensional transition metal dichalcogenides strongly depend on their three-dimensional atomic structure and crystal defects. Using Re-doped MoS2 as a model system, here we present scanning atomic electron tomography as a method to determine three-dimensional atomic positions as well as positions of crystal defects such as dopants, vacancies and ripples with a precision down to 4 pm. We measure the three-dimensional bond distortion and local strain tensor induced by single dopants. By directly providing these experimental three-dimensional atomic coordinates to density functional theory, we obtain more accurate electronic band structures than derived from conventional density functional theory calculations that relies on relaxed three-dimensional atomic coordinates. We anticipate that scanning atomic electron tomography not only will be generally applicable to determine the three-dimensional atomic coordinates of two-dimensional materials, but also will enable ab initio calculations to better predict the physical, chemical and electronic properties of these materials.

14.
Phys Rev Lett ; 127(27): 270503, 2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35061424

ABSTRACT

Electron transport in realistic physical and chemical systems often involves the nontrivial exchange of energy with a large environment, requiring the definition and treatment of open quantum systems. Because the time evolution of an open quantum system employs a nonunitary operator, the simulation of open quantum systems presents a challenge for universal quantum computers constructed from only unitary operators or gates. Here, we present a general algorithm for implementing the action of any nonunitary operator on an arbitrary state on a quantum device. We show that any quantum operator can be exactly decomposed as a linear combination of at most four unitary operators. We demonstrate this method on a two-level system in both zero and finite temperature amplitude damping channels. The results are in agreement with classical calculations, showing promise in simulating nonunitary operations on intermediate-term and future quantum devices.

15.
J Chem Phys ; 154(10): 104109, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722047

ABSTRACT

Cavity-mediated light-matter coupling can dramatically alter opto-electronic and physico-chemical properties of a molecule. Ab initio theoretical predictions of these systems need to combine non-perturbative, many-body electronic structure theory-based methods with cavity quantum electrodynamics and theories of open-quantum systems. Here, we generalize quantum-electrodynamical density functional theory to account for dissipative dynamics of the cavity and describe coupled cavity-single molecule interactions in the weak-to-strong-coupling regimes. Specifically, to establish this generalized technique, we study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling. By tuning the coupling, we achieve cavity-mediated energy transfer between electronically excited states. This generalized ab initio quantum-electrodynamical density functional theory treatment can be naturally extended to describe cavity-mediated interactions in arbitrary electromagnetic environments, accessing correlated light-matter observables and thereby closing the gap between electronic structure theory, quantum optics, and nanophotonics.

16.
Nano Lett ; 20(3): 1923-1927, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32073859

ABSTRACT

Objects around us constantly emit and absorb thermal radiation. The emission and absorption processes are governed by two fundamental radiative properties: emissivity and absorptivity. For reciprocal systems, the emissivity and absorptivity are restricted to be equal by Kirchhoff's law of thermal radiation. This restriction limits the degree of freedom to control thermal radiation and contributes to an intrinsic loss mechanism in photonic energy harvesting systems. Existing approaches to violate Kirchhoff's law typically utilize magneto-optical effects with an external magnetic field. However, these approaches require either a strong magnetic field (∼3T) or narrow-band resonances under a moderate magnetic field (∼0.3T), because the nonreciprocity in conventional magneto-optical effects is weak in the thermal wavelength range. Here, we show that the axion electrodynamics in magnetic Weyl semimetals can be used to construct strongly nonreciprocal thermal emitters that nearly completely violate Kirchhoff's law over broad angular and frequency ranges without requiring any external magnetic field.

17.
Phys Rev Lett ; 125(24): 247702, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33412028

ABSTRACT

We present a theoretical approach to use ferromagnetic or ferrimagnetic nanoparticles as microwave nanomagnonic cavities to concentrate microwave magnetic fields into deeply subwavelength volumes ∼10^{-13} mm^{3}. We show that the field in such nanocavities can efficiently couple to isolated spin emitters (spin qubits) positioned close to the nanoparticle surface reaching the single magnon-spin strong-coupling regime and mediate efficient long-range quantum state transfers between isolated spin emitters. Nanomagnonic cavities thus pave the way toward magnon-based quantum networks and magnon-mediated quantum gates.

18.
Phys Rev Lett ; 124(11): 117401, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242728

ABSTRACT

It has recently been indicated that the hexagonal manganites exhibit Higgs- and Goldstone-like phonon modes that modulate the amplitude and phase of their primary order parameter. Here, we describe a mechanism by which a silent Goldstone-like phonon mode can be coherently excited, which is based on nonlinear coupling to an infrared-active Higgs-like phonon mode. Using a combination of first-principles calculations and phenomenological modeling, we describe the coupled Higgs-Goldstone dynamics in response to the excitation with a terahertz pulse. Besides theoretically demonstrating coherent control of crystallographic Higgs and Goldstone excitations, we show that the previously inaccessible silent phonon modes can be excited coherently with this mechanism.

19.
J Chem Phys ; 153(9): 094116, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32891103

ABSTRACT

Advances in nanophotonics, quantum optics, and low-dimensional materials have enabled precise control of light-matter interactions down to the nanoscale. Combining concepts from each of these fields, there is now an opportunity to create and manipulate photonic matter via strong coupling of molecules to the electromagnetic field. Toward this goal, here we demonstrate a first principles framework to calculate polaritonic excited-state potential-energy surfaces, transition dipole moments, and transition densities for strongly coupled light-matter systems. In particular, we demonstrate the applicability of our methodology by calculating the polaritonic excited-state manifold of a formaldehyde molecule strongly coupled to an optical cavity. This proof-of-concept calculation shows how strong coupling can be exploited to alter photochemical reaction pathways by influencing avoided crossings with tuning of the cavity frequency and coupling strength. Therefore, by introducing an ab initio method to calculate excited-state potential-energy surfaces, our work opens a new avenue for the field of polaritonic chemistry.

20.
Nano Lett ; 19(4): 2653-2660, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30892900

ABSTRACT

Extreme confinement of electromagnetic energy by phonon polaritons holds the promise of strong and new forms of control over the dynamics of matter. To bring such control to the atomic-scale limit, it is important to consider phonon polaritons in two-dimensional (2D) systems. Recent studies have pointed out that in 2D, splitting between longitudinal and transverse optical (LO and TO) phonons is absent at the Γ point, even for polar materials. Does this lack of LO-TO splitting imply the absence of a phonon polariton in polar monolayers? To answer this, we connect the microscopic phonon properties with the macroscopic electromagnetic response. Specifically, we derive a first-principles expression for the conductivity of a polar monolayer specified by the wave-vector-dependent LO and TO phonon dispersions. In the long-wavelength (local) limit, we find a universal form for the conductivity in terms of the LO phonon frequency at the Γ point, its lifetime, and the group velocity of the LO phonon. Our analysis reveals that the phonon polariton of 2D is simply the LO phonon of the 2D system. For the specific example of hexagonal boron nitride (hBN), we estimate the confinement and propagation losses of the LO phonons, finding that high confinement and reasonable propagation quality factors coincide in regions that may be difficult to detect with current near-field optical microscopy techniques. Finally, we study the interaction of external emitters with 2D hBN nanostructures, finding an extreme enhancement of spontaneous emission due to coupling with localized 2D phonon polaritons and the possibility of multimode strong and ultrastrong coupling between an external emitter and hBN phonons. This may lead to the design of new hybrid states of electrons and phonons based on strong coupling.

SELECTION OF CITATIONS
SEARCH DETAIL