Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Bioessays ; 45(4): e2300003, 2023 04.
Article in English | MEDLINE | ID: mdl-36789559

ABSTRACT

Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-ß-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.


Subject(s)
MAP Kinase Kinase Kinases , Muscle, Skeletal , Humans , Hypertrophy , MAP Kinase Kinase Kinases/metabolism , Signal Transduction/physiology
2.
FASEB J ; 37(2): e22727, 2023 02.
Article in English | MEDLINE | ID: mdl-36583689

ABSTRACT

Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRα/γ) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRα/γ knockout mice to investigate the effect of ERRα/γ deletion on muscle and exercise parameters. Individual knockout of ERRα/γ did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRα and ERRγ together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRα/γ mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.


Subject(s)
Mitochondria , Muscle, Skeletal , Mice , Animals , Muscle, Skeletal/metabolism , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction , Estrogens/metabolism
3.
FASEB J ; 36(12): e22666, 2022 12.
Article in English | MEDLINE | ID: mdl-36412933

ABSTRACT

Skeletal muscle atrophy is a prevalent complication in multiple chronic diseases and disuse conditions. Fibroblast growth factor-inducible 14 (Fn14) is a member of the TNF receptor superfamily and a bona fide receptor of the TWEAK cytokine. Accumulating evidence suggests that Fn14 levels are increased in catabolic conditions as well as during exercise. However, the role of Fn14 in the regulation of skeletal muscle mass and function remains poorly understood. In this study, through the generation of novel skeletal muscle-specific Fn14-knockout mice, we have investigated the muscle role of Fn14 in the regulation of exercise capacity and denervation-induced muscle atrophy. Our results demonstrate that there was no difference in skeletal muscle mass between control and muscle-specific Fn14-knockout mice. Nevertheless, the deletion of Fn14 in skeletal muscle significantly improved exercise capacity and resistance to fatigue. This effect of Fn14 deletion is associated with an increased proportion of oxidative myofibers and higher capillaries number per myofiber in skeletal muscle. Furthermore, our results demonstrate that targeted deletion of Fn14 inhibits denervation-induced muscle atrophy in adult mice. Deletion of Fn14 reduced the expression of components of the ubiquitin-proteasome system and non-canonical NF-kappa B signaling in denervated skeletal muscle, as well as increased the phosphorylation of Akt kinase and FoxO3a transcription factor. Collectively, our results demonstrate that targeted inhibition of Fn14 improves exercise tolerance and inhibits denervation-induced muscle atrophy in adult mice.


Subject(s)
Exercise Tolerance , Tumor Necrosis Factors , Mice , Animals , TWEAK Receptor/genetics , Tumor Necrosis Factors/metabolism , Muscular Atrophy/metabolism , Mice, Knockout
4.
Cell ; 134(3): 405-15, 2008 08 08.
Article in English | MEDLINE | ID: mdl-18674809

ABSTRACT

The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Multienzyme Complexes/metabolism , Muscle, Skeletal/metabolism , PPAR delta/agonists , Physical Endurance/drug effects , Protein Serine-Threonine Kinases/metabolism , Ribonucleotides/pharmacology , Thiazoles/pharmacology , AMP-Activated Protein Kinases , Administration, Oral , Aminoimidazole Carboxamide/administration & dosage , Aminoimidazole Carboxamide/pharmacology , Animals , Biomimetics , Male , Mice , Mice, Inbred C57BL , Physical Conditioning, Animal , Ribonucleotides/administration & dosage
5.
FASEB J ; 35(5): e21480, 2021 05.
Article in English | MEDLINE | ID: mdl-33788962

ABSTRACT

Skeletal muscle ischemia is a major consequence of peripheral arterial disease (PAD) or critical limb ischemia (CLI). Although therapeutic options for resolving muscle ischemia in PAD/CLI are limited, the issue is compounded by poor understanding of the mechanisms driving muscle vascularization. We found that nuclear receptor estrogen-related receptor alpha (ERRα) expression is induced in murine skeletal muscle by hindlimb ischemia (HLI), and in cultured myotubes by hypoxia, suggesting a potential role for ERRα in ischemic response. To test this, we generated skeletal muscle-specific ERRα transgenic (TG) mice. In these mice, ERRα drives myofiber type switch from glycolytic type IIB to oxidative type IIA/IIX myofibers, which are typically associated with more vascular supply in muscle. Indeed, RNA sequencing and functional enrichment analysis of TG muscle revealed that "paracrine angiogenesis" is the top-ranked transcriptional program activated by ERRα in the skeletal muscle. Immunohistochemistry and angiography showed that ERRα overexpression increases baseline capillarity, arterioles and non-leaky blood vessel formation in the skeletal muscles. Moreover, ERRα overexpression facilitates ischemic neo-angiogenesis and perfusion recovery in hindlimb musculature of mice subjected to HLI. Therefore, ERRα is a hypoxia inducible nuclear receptor that is involved in skeletal muscle angiogenesis and could be potentially targeted for treating PAD/CLI.


Subject(s)
Hindlimb/blood supply , Ischemia/physiopathology , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Receptors, Estrogen/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Estrogen/genetics , ERRalpha Estrogen-Related Receptor
6.
Am J Physiol Cell Physiol ; 319(3): C541-C551, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32697599

ABSTRACT

Lin28a/miRNA let-7b-5p pathway has emerged as a key regulators of energy homeostasis in the skeletal muscle. However, the mechanism through which this pathway is regulated in the skeletal muscle has remained unclear. We have found that 8 wk of aerobic training (Tr) markedly decreased let-7b-5p expression in murine skeletal muscle, whereas high-fat diet (Hfd) increased its expression. Conversely, Lin28a expression, a well-known inhibitor of let-7b-5p, was induced by Tr and decreased by Hfd. Similarly, in human muscle biopsies, Tr increased LIN28 expression and decreased let-7b-5p expression. Bioinformatics analysis of LIN28a DNA sequence revealed that its enrichment in peroxisome proliferator-activated receptor delta (PPARδ) binding sites, which is a well-known metabolic regulator of exercise. Treatment of primary mouse skeletal muscle cells or C2C12 cells with PPARδ activators GW501516 and AICAR increased Lin28a expression. Lin28a and let-7b-5p expression was also regulated by PPARδ coregulators. While PPARγ coactivator-1α (PGC1α) increased Lin28a expression, corepressor NCoR1 decreased its expression. Furthermore, PGC1α markedly reduced the let-7b-5p expression. PGC1α-mediated induction of Lin28a expression was blocked by the PPARδ inhibitor GSK0660. In agreement, Lin28a expression was downregulated in PPARδ knocked-down cells leading to increased let-7b-5p expression. Finally, we show that modulation of the Lin28a-let-7b-5p pathway in muscle cells leads to changes in mitochondrial metabolism in PGC1α dependent fashion. In summary, we demonstrate that Lin28a-let-7b-5p is a direct target of PPARδ in the skeletal muscle, where it impacts mitochondrial respiration.


Subject(s)
Mitochondria/metabolism , Muscle, Skeletal/metabolism , PPAR delta/metabolism , RNA-Binding Proteins/genetics , Animals , Cell Line , Down-Regulation , Mice , Muscle Fibers, Skeletal/metabolism , PPAR delta/genetics
7.
Breast Cancer Res Treat ; 170(2): 279-292, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29574636

ABSTRACT

PURPOSE: G protein-coupled receptors (GPCRs) represent the largest family of druggable targets in human genome. Although several GPCRs can cross-talk with the human epidermal growth factor receptors (HERs), the expression and function of most GPCRs remain unknown in HER2+ breast cancer (BC). In this study, we aimed to evaluate gene expression of GPCRs in tumorigenic or anti-HER2 drug-resistant cells and to understand the potential role of candidate GPCRs in HER2+ BC. METHODS: Gene expression of 352 GPCRs was profiled in Aldeflur+ tumorigenic versus Aldeflur- population and anti-HER2 therapy-resistant derivatives versus parental cells of HER2+ BT474 cells. The GPCR candidates were confirmed in 7 additional HER2+ BC cell line models and publicly available patient dataset. Anchorage-dependent and anchorage-independent cell growth, mammosphere formation, and migration/invasion were evaluated upon GPR110 knockdown by siRNA in BT474 and SKBR3 parental and lapatinib+ trastuzumab-resistant (LTR) cells. RESULTS: Adhesion and class A GPCRs were overexpressed in Aldeflur+ and anti-HER2 therapy-resistant population of BT474 cells, respectively. GPR110 was the only GPCR overexpressed in Aldeflur+ and anti-HER2 therapy-resistant population in BT474, SKBR3, HCC1569, MDA-MB-361, AU565, and/or HCC202 cells and in HER2+ BC subtype in patient tumors. Using BT474 and SKBR3 parental and LTR cells, we found that GPR110 knockdown significantly reduced anchorage-dependent/independent cell growth as well as migration/invasion of parental and LTR cells and mammosphere formation in LTR derivatives and not in parental cells. CONCLUSION: Our data suggest a potential role of GPR110 in tumorigenicity and in tumor cell dissemination in HER2+ BC.


Subject(s)
Breast Neoplasms/metabolism , Oncogene Proteins/metabolism , Receptor, ErbB-2/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm , Female , Gene Knockdown Techniques , Humans , Mice , Molecular Targeted Therapy , Oncogene Proteins/genetics , RNA, Small Interfering/genetics , Receptor, ErbB-2/genetics , Receptors, G-Protein-Coupled/genetics , Reproducibility of Results , Xenograft Model Antitumor Assays
8.
J Biol Chem ; 289(37): 25556-70, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25053409

ABSTRACT

Rapamycin at high doses (2-10 mg/kg body weight) inhibits mammalian target of rapamycin complex 1 (mTORC1) and protein synthesis in mice. In contrast, low doses of rapamycin (10 µg/kg) increase mTORC1 activity and protein synthesis in skeletal muscle. Similar changes are found with SLF (synthetic ligand for FKBP12, which does not inhibit mTORC1) and in mice with a skeletal muscle-specific FKBP12 deficiency. These interventions also increase Ca(2+) influx to enhance refilling of sarcoplasmic reticulum Ca(2+) stores, slow muscle fatigue, and increase running endurance without negatively impacting cardiac function. FKBP12 deficiency or longer treatments with low dose rapamycin or SLF increase the percentage of type I fibers, further adding to fatigue resistance. We demonstrate that FKBP12 and its ligands impact multiple aspects of muscle function.


Subject(s)
Ligands , Muscle, Skeletal/growth & development , Sirolimus/administration & dosage , Tacrolimus Binding Protein 1A/metabolism , Animals , Calcium Signaling/drug effects , Dose-Response Relationship, Drug , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , Muscle Contraction/drug effects , Muscle, Skeletal/metabolism , Protein Binding , Protein Biosynthesis/drug effects , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , TOR Serine-Threonine Kinases , Tacrolimus Binding Protein 1A/chemistry , Tacrolimus Binding Protein 1A/genetics
9.
Circ Res ; 110(8): 1087-96, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22415017

ABSTRACT

RATIONALE: Oxidative myofibers in the skeletal muscles express high levels of angiogenic factors, have dense vasculature, and promptly revascularize during ischemia. Estrogen-related receptor-gamma (ERRγ) activates genes that govern metabolic and vascular features typical to oxidative myofibers. Therefore, ERRγ-dependent remodeling of the myofibers may promote neoangiogenesis and restoration of blood perfusion in skeletal muscle ischemia. OBJECTIVE: To investigate the muscle fiber type remodeling by ERRγ and its role in the vascular recovery of ischemic muscle. METHODS AND RESULTS: Using immunohistology, we show that skeletal muscle-specific transgenic overexpression of ERRγ increases the proportions of oxidative and densely vascularized type IIA and IIX myofibers and decreases glycolytic and less vascularized type IIB myofibers. This myofiber remodeling results in a higher basal blood flow in the transgenic skeletal muscle. By applying unilateral hind limb ischemia to transgenic and wild-type mice, we found accelerated revascularization (fluorescent microangiography), restoration of blood perfusion (laser Doppler flowmetry), and muscle repair (Evans blue dye exclusion) in transgenic compared to wild-type ischemic muscles. This ameliorative effect is linked to enhanced neoangiogenesis (CD31 staining and microfil perfusion) by ERRγ. Using cultured muscle cells in which ERRγ is inactivated, we show that the receptor is dispensable for the classical hypoxic response of transcriptional upregulation and secretion of vascular endothelial growth factor A. Rather, the ameliorative effect of ERRγ is linked to the receptor-mediated increase in oxidative myofibers that inherently express and secrete high levels of angiogenic factors. CONCLUSIONS: The ERRγ is a hypoxia-independent inducer of neoangiogenesis that can promote reparative revascularization.


Subject(s)
Ischemia/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Neovascularization, Physiologic , Receptors, Estrogen/metabolism , Animals , Blood Flow Velocity , Cell Hypoxia , Cell Line , Disease Models, Animal , Gene Expression Regulation , Hindlimb , Immunohistochemistry , Ischemia/genetics , Ischemia/pathology , Ischemia/physiopathology , Laser-Doppler Flowmetry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/pathology , Receptors, Estrogen/genetics , Recovery of Function , Regional Blood Flow , Time Factors , Transfection , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
10.
Methodist Debakey Cardiovasc J ; 19(5): 58-68, 2023.
Article in English | MEDLINE | ID: mdl-38028974

ABSTRACT

Exercise has a profound effect on cardiovascular disease, particularly through vascular remodeling and regeneration. Peripheral artery disease (PAD) is one such cardiovascular condition that benefits from regular exercise or rehabilitative physical therapy in terms of slowing the progression of disease and delaying amputations. Various rodent pre-clinical studies using models of PAD and exercise have shed light on molecular pathways of vascular regeneration. Here, I review key exercise-activated signaling pathways (nuclear receptors, kinases, and hypoxia inducible factors) in the skeletal muscle that drive paracrine regenerative angiogenesis. The rationale for highlighting the skeletal muscle is that it is the largest organ recruited during exercise. During exercise, skeletal muscle releases several myokines, including angiogenic factors and cytokines that drive tissue vascular regeneration via activation of endothelial cells, as well as by recruiting immune and endothelial progenitor cells. Some of these core exercise-activated pathways can be extrapolated to vascular regeneration in other organs. I also highlight future areas of exercise research (including metabolomics, single cell transcriptomics, and extracellular vesicle biology) to advance our understanding of how exercise induces vascular regeneration at the molecular level, and propose the idea of "exercise-mimicking" therapeutics for vascular recovery.


Subject(s)
Endothelial Cells , Peripheral Arterial Disease , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Ischemia/therapy , Ischemia/metabolism , Peripheral Arterial Disease/therapy , Exercise , Regeneration/physiology , Neovascularization, Physiologic
11.
FEBS J ; 290(19): 4596-4613, 2023 10.
Article in English | MEDLINE | ID: mdl-35942640

ABSTRACT

Peripheral arterial disease (PAD) is a prevalent cardiovascular complication of limb vascular insufficiency, causing ischemic injury, mitochondrial metabolic damage and functional impairment in the skeletal muscle, and ultimately leading to immobility and mortality. While potential therapies have been mostly focussed on revascularization, none of the currently available pharmacological treatments are fully effective in PAD, often leading to amputations, particularly in chronic metabolic diseases. One major limitation of focussed angiogenesis and revascularization as a therapeutic strategy is a limited effect on metabolic restoration and muscle regeneration in the affected limb. Therefore, additional preclinical investigations are needed to discover novel treatment options for PAD preferably targeting multiple aspects of muscle recovery. In this review, we propose nuclear receptors expressed in the skeletal muscle as potential candidates for ischemic muscle repair in PAD. We review classic steroid and orphan receptors that have been reported to be involved in the regulation of paracrine muscle angiogenesis, oxidative metabolism, mitochondrial biogenesis and muscle regeneration, and discuss how these receptors could be critical for recovery from ischemic muscle damage. Furthermore, we identify existing gaps in our understanding of nuclear receptor signalling in the skeletal muscle and propose future areas of research that could be instrumental in exploring nuclear receptors as therapeutic candidates for treating PAD.


Subject(s)
Muscular Diseases , Peripheral Arterial Disease , Humans , Peripheral Arterial Disease/drug therapy , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/metabolism , Muscular Diseases/drug therapy , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscle, Skeletal/metabolism , Ischemia/drug therapy , Ischemia/metabolism , Cell Respiration
12.
J Am Heart Assoc ; 12(16): e028880, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37548153

ABSTRACT

Background Peripheral arterial disease and critical limb ischemia are cardiovascular complications associated with vascular insufficiency, oxidative metabolic dysfunction, and myopathy in the limbs. Estrogen-related receptor gamma (ERRγ) has emerged as a dual regulator of paracrine angiogenesis and oxidative metabolism through transgenic mouse studies. Here our objective was to investigate whether postischemic intramuscular targeting of ERRγ via gene therapy promotes ischemic recovery in a preclinical model of peripheral arterial disease/critical limb ischemia. Methods and Results Adeno-associated virus 9 (AAV9) Esrrg gene delivery vector was developed and first tested via intramuscular injection in murine skeletal muscle. AAV9-Esrrg robustly increased ERRγ protein expression, induced angiogenic and oxidative genes, and boosted capillary density and succinate dehydrogenase oxidative metabolic activity in skeletal muscles of C57Bl/6J mice. Next, hindlimb ischemia was induced via unilateral femoral vessel ligation in mice, followed by intramuscular AAV9-Esrrg (or AAV9-green fluorescent protein) gene delivery 24 hours after injury. ERRγ overexpression increased ischemic neoangiogenesis and markers of endothelial activation, and significantly improved ischemic revascularization measured using laser Doppler flowmetry. Moreover, ERRγ overexpression restored succinate dehydrogenase oxidative metabolic capacity in ischemic muscle, which correlated with increased mitochondrial respiratory complex protein expression. Most importantly, myofiber size to number quantification revealed that AAV9-Esrrg restores myofibrillar size and mitigates ischemia-induced myopathy. Conclusions These results demonstrate that intramuscular AAV9-Esrrg delivery rescues ischemic pathology after hindlimb ischemia, underscoring that Esrrg gene therapy or pharmacological activation could be a promising strategy for the management of peripheral arterial disease/critical limb ischemia.


Subject(s)
Peripheral Arterial Disease , Succinate Dehydrogenase , Mice , Animals , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Chronic Limb-Threatening Ischemia , Neovascularization, Physiologic/genetics , Muscle, Skeletal/blood supply , Genetic Therapy , Mice, Transgenic , Peripheral Arterial Disease/therapy , Ischemia/genetics , Ischemia/therapy , Ischemia/pathology , Estrogens/metabolism , Hindlimb/blood supply , Mice, Inbred C57BL , Disease Models, Animal
13.
J Lipid Res ; 53(12): 2610-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23028113

ABSTRACT

Mitochondrial dysfunction has been implicated in the pathogenesis of type 2 diabetes. Identifying novel regulators of mitochondrial bioenergetics will broaden our understanding of regulatory checkpoints that coordinate complex metabolic pathways. We previously showed that Nur77, an orphan nuclear receptor of the NR4A family, regulates the expression of genes linked to glucose utilization. Here we demonstrate that expression of Nur77 in skeletal muscle also enhances mitochondrial function. We generated MCK-Nur77 transgenic mice that express wild-type Nur77 specifically in skeletal muscle. Nur77-overexpressing muscle had increased abundance of oxidative muscle fibers and mitochondrial DNA content. Transgenic muscle also exhibited enhanced oxidative metabolism, suggestive of increased mitochondrial activity. Metabolomic analysis confirmed that Nur77 transgenic muscle favored fatty acid oxidation over glucose oxidation, mimicking the metabolic profile of fasting. Nur77 expression also improved the intrinsic respiratory capacity of isolated mitochondria, likely due to the increased abundance of complex I of the electron transport chain. These changes in mitochondrial metabolism translated to improved muscle contractile function ex vivo and improved cold tolerance in vivo. Our studies outline a novel role for Nur77 in the regulation of oxidative metabolism and mitochondrial activity in skeletal muscle.


Subject(s)
Muscle, Skeletal/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Animals , Creatine Kinase/genetics , Creatine Kinase/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Muscle/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/enzymology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Oxidation-Reduction , Promoter Regions, Genetic/genetics
14.
FASEB Bioadv ; 4(9): 602-618, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36089981

ABSTRACT

Obesity and type II diabetes are leading causes of peripheral arterial disease (PAD), which is characterized by vascular insufficiency and ischemic damage in the limb skeletal muscle. Glycemic control is not sufficient to prevent progression of PAD, and molecular targets that can promote muscle neo-angiogenesis in obesity and diabetes remain poorly defined. Here, we have investigated whether nuclear receptor estrogen-related receptor alpha (ERRα) can promote ischemic revascularization in the skeletal muscles of diet-induced obese (DIO) mice. Using muscle-specific ERRα transgenic mice, we found that ERRα overexpression promotes revascularization, marked by increased capillary staining and muscle perfusion in DIO mice after hindlimb ischemic injury. Furthermore, ERRα facilitates repair and restoration of skeletal muscle myofiber size after limb ischemia in DIO mice. The ameliorative effects of ERRα overexpression did not involve the prevention of weight gain, hyperglycemia or glucose/insulin intolerance, suggesting a direct role for ERRα in promoting angiogenesis. Interestingly, levels of endogenous ERRα protein are suppressed in the skeletal muscles of DIO mice compared to lean controls, coinciding with the suppression of angiogenic gene expression, and reduced AMPK signaling in the DIO skeletal muscles. Upon further investigating the link between AMPK and ERRα, we found that AMPK activation increases the expression and recruitment of ERRα protein to specific angiogenic gene promoters in muscle cells. Further, the induction of angiogenic factors by AMPK activators in muscle cells is blocked by repressing ERRα. In summary, our results identify an AMPK/ERRα-dependent angiogenic gene program in the skeletal muscle, which is repressed by DIO, and demonstrate that forced ERRα activation can promote ischemic revascularization and muscle recovery in obesity.

15.
Curr Sports Med Rep ; 9(4): 227-32, 2010.
Article in English | MEDLINE | ID: mdl-20622541

ABSTRACT

Regular exercise promotes favorable structural and metabolic adaptations, especially in the skeletal muscle, to boost endurance and cardiovascular health. These changes are driven by a network of incompletely understood molecular pathways that trigger transcriptional remodeling of the skeletal muscle. In this article, we describe recent advances in the understanding of the key components of this circuitry [namely peroxisome proliferator activator receptor delta (PPARdelta), adenosine monophosphate (AMP)-activated protein kinase (AMPK), silent information regulator two protein 1 (SIRT1), and peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)] that govern aerobic transformation of the skeletal muscles. We also discuss recent discoveries that raise the possibility of synthetically mimicking exercise with pathway-specific drugs to improve aerobic capacity and, in turn, health.


Subject(s)
Exercise/physiology , Muscle, Skeletal/metabolism , Physical Endurance/physiology , Animals , Energy Metabolism/physiology , Humans , Muscle, Skeletal/enzymology , Muscle, Skeletal/physiology , Signal Transduction/physiology
16.
FASEB Bioadv ; 2(9): 538-553, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32923988

ABSTRACT

Skeletal muscle atrophy is debilitating consequence of a large number of chronic disease states, aging, and disuse conditions. Skeletal muscle mass is regulated through coordinated activation of a number of signaling cascades. Transforming growth factor-ß activated kinase 1 (TAK1) is a central kinase that mediates the activation of multiple signaling pathways in response to various growth factors, cytokines, and microbial products. Accumulating evidence suggests that TAK1 promotes skeletal muscle growth and essential for the maintenance of muscle mass in adults. Targeted inactivation of TAK1 leads to severe muscle wasting and kyphosis in mice. However, the mechanisms by which TAK1 prevents loss of muscle mass remain poorly understood. Through generation of inducible skeletal muscle-specific Tak1-knockout mice, we demonstrate that targeted ablation of TAK1 disrupts redox signaling leading to the accumulation of reactive oxygen species and loss of skeletal muscle mass and contractile function. Suppression of oxidative stress using Trolox improves muscle contractile function and inhibits the activation of catabolic signaling pathways in Tak1-deficient muscle. Moreover, Trolox inhibits the activation of ubiquitin-proteasome system and autophagy markers in skeletal muscle of Tak1-deficient mice. Furthermore, inhibition of oxidative stress using Trolox prevents the slow-to-fast type fiber transition and improves mitochondrial respiration in skeletal muscle of Tak1-deficient mice. Overall, our results demonstrate that TAK1 maintains skeletal muscle mass and health through redox homeostasis.

17.
Science ; 368(6490)2020 05 01.
Article in English | MEDLINE | ID: mdl-32355002

ABSTRACT

Repeated bouts of exercise condition muscle mitochondria to meet increased energy demand-an adaptive response associated with improved metabolic fitness. We found that the type 2 cytokine interleukin-13 (IL-13) is induced in exercising muscle, where it orchestrates metabolic reprogramming that preserves glycogen in favor of fatty acid oxidation and mitochondrial respiration. Exercise training-mediated mitochondrial biogenesis, running endurance, and beneficial glycemic effects were lost in Il13-/- mice. By contrast, enhanced muscle IL-13 signaling was sufficient to increase running distance, glucose tolerance, and mitochondrial activity similar to the effects of exercise training. In muscle, IL-13 acts through both its receptor IL-13Rα1 and the transcription factor Stat3. The genetic ablation of either of these downstream effectors reduced running capacity in mice. Thus, coordinated immunological and physiological responses mediate exercise-elicited metabolic adaptations that maximize muscle fuel economy.


Subject(s)
Adaptation, Physiological/immunology , Glycogen/metabolism , Interleukin-13/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Physical Endurance/immunology , Animals , Blood Glucose/metabolism , Cell Line , Fatty Acids/metabolism , Female , Humans , Interleukin-13/blood , Interleukin-13/genetics , Interleukin-13 Receptor alpha1 Subunit/genetics , Interleukin-13 Receptor alpha1 Subunit/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myoblasts/metabolism , Oxidation-Reduction , Physical Conditioning, Animal , Running , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
18.
J Clin Invest ; 116(3): 590-7, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16511591

ABSTRACT

Obesity is a growing threat to global health by virtue of its association with insulin resistance, glucose intolerance, hypertension, and dyslipidemia, collectively known as the metabolic syndrome or syndrome X. The nuclear receptors PPARalpha and PPARgamma are therapeutic targets for hypertriglyceridemia and insulin resistance, respectively, and drugs that modulate these receptors are currently in clinical use. More recent work on the less-described PPAR isotype PPARdelta has uncovered a dual benefit for both hypertriglyceridemia and insulin resistance, highlighting the broad potential of PPARdelta in the treatment of metabolic disease. PPARdelta enhances fatty acid catabolism and energy uncoupling in adipose tissue and muscle, and it suppresses macrophage-derived inflammation. Its combined activities in these and other tissues make it a multifaceted therapeutic target for the metabolic syndrome with the potential to control weight gain, enhance physical endurance, improve insulin sensitivity, and ameliorate atherosclerosis.


Subject(s)
Metabolic Syndrome/metabolism , Myocardium/metabolism , PPAR delta/physiology , Animals , Humans , Lipid Metabolism/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology
20.
Sci Rep ; 7(1): 10237, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860475

ABSTRACT

Skeletal muscle wasting is prevalent in many chronic diseases, necessitating inquiries into molecular regulation of muscle mass. Nuclear receptor co-activator peroxisome proliferator-activated receptor co-activator 1 alpha (PGC1α) and its splice variant PGC1α4 increase skeletal muscle mass. However, the effect of the other PGC1 sub-type, PGC1ß, on muscle size is unclear. In transgenic mice selectively over-expressing PGC1ß in the skeletal muscle, we have found that PGC1ß progressively decreases skeletal muscle mass predominantly associated with loss of type 2b fast-twitch myofibers. Paradoxically, PGC1ß represses the ubiquitin-proteolysis degradation pathway genes resulting in ubiquitinated protein accumulation in muscle. However, PGC1ß overexpression triggers up-regulation of apoptosis and autophagy genes, resulting in robust activation of these cell degenerative processes, and a concomitant increase in muscle protein oxidation. Concurrently, PGC1ß up-regulates apoptosis and/or autophagy transcriptional factors such as E2f1, Atf3, Stat1, and Stat3, which may be facilitating myopathy. Therefore, PGC1ß activation negatively affects muscle mass over time, particularly fast-twitch muscles, which should be taken into consideration along with its known aerobic effects in the skeletal muscle.


Subject(s)
Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Apoptosis , Autophagy , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Organ Size , Oxidative Stress , Proteolysis , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL