Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Gut ; 71(6): 1192-1202, 2022 06.
Article in English | MEDLINE | ID: mdl-34344786

ABSTRACT

OBJECTIVE: Identifying components of immuneparesis, a hallmark of chronic liver failure, is crucial for our understanding of complications in cirrhosis. Various suppressor CD4+ T cells have been established as potent inhibitors of systemic immune activation. Here, we establish the presence, regulation and mechanism of action of a suppressive CD4+ T cell subset expressing human leucocyte antigen G (HLA-G) in patients with acute decompensation of cirrhosis (AD). DESIGN: Flow cytometry was used to determine the proportion and immunophenotype of CD4+HLA-G+ T cells from peripheral blood of 20 healthy controls (HCs) and 98 patients with cirrhosis (28 with stable cirrhosis (SC), 20 with chronic decompensated cirrhosis (CD) and 50 with AD). Transcriptional and functional signatures of cell-sorted CD4+HLA-G+ cells were delineated by NanoString technology and suppression assays, respectively. The role of immunosuppressive cytokine interleukin (IL)-35 in inducing this population was investigated through in vitro blockade experiments. Immunohistochemistry (IHC) and cultures of primary human Kupffer cells (KCs) were performed to assess cellular sources of IL-35. HLA-G-mediated T cell suppression was explored using neutralising antibodies targeting co-inhibitory pathways. RESULTS: Patients with AD were distinguished by an expansion of a CD4+HLA-G+CTLA-4+IL-35+ immunosuppressive population associated with disease severity, clinical course of AD, infectious complications and poor outcome. Transcriptomic analyses excluded the possibility that these were thymic-derived regulatory T cells. IHC analyses and in vitro cultures demonstrate that KCs represent a potent source of IL-35 which can induce the observed HLA-G+ phenotype. These exert cytotoxic T lymphocyte antigen-4-mediated impaired responses in T cells paralleled by an HLA-G-driven downregulation of T helper 17-related cytokines. CONCLUSION: We have identified a cytokine-driven peripherally derived suppressive population that may contribute to immuneparesis in AD.


Subject(s)
HLA-G Antigens , T-Lymphocyte Subsets , CD4-Positive T-Lymphocytes , Cytokines/metabolism , Humans , Interleukins , Liver Cirrhosis/pathology
2.
J Hepatol ; 75(1): 177-189, 2021 07.
Article in English | MEDLINE | ID: mdl-33631227

ABSTRACT

BACKGROUND & AIMS: Checkpoint inhibitor-related hepatitis (CPI-Hep) is an emerging clinical challenge. We aimed to gain insights into the immunopathology of CPI-Hep by comprehensively characterising myeloid and lymphoid subsets. METHODS: CPI-treated patients with or without related hepatitis (CPI-Hep; n = 22 and CPI-noHep; n = 7) were recruited. Phenotypic and transcriptional profiling of peripheral immune subsets was performed and compared with 19 healthy controls (HCs). In vitro monocyte-derived macrophages (MoMFs) were assessed for activation and cytokine production. CD163, CCR2, CD68, CD3, CD8 and granzyme B expression was assessed using immunohistochemistry/immunofluorescence (n = 4). RESULTS: A significant total monocyte depletion was observed in CPI-Hep compared with HCs (p = 0.04), along with a proportionate increase in the classical monocyte population (p = 0.0002) and significant upregulation of CCR2, CD163 and downregulation of CCR7. Soluble CD163 levels were significantly elevated in CPI-Hep compared with HCs (p <0.0001). In vitro MoMFs from CPI-Hep showed enhanced production of pro-inflammatory cytokines. CD8+ T cells demonstrated increased perforin, granzyme B, ICOS and HLA-DR expression in CPI-Hep. Transcriptional profiling indicated the presence of activated monocyte and enhanced effector CD8+ T cell populations in CPI-Hep. Immunohistochemistry demonstrated co-localisation of CD8+/granzyme B+ T cells with CD68+CCR2+/CD68+CD163+ macrophages in CPI-Hep liver tissue. CONCLUSIONS: CPI-Hep is associated with activation of peripheral monocytes and an enhanced cytotoxic, effector CD8+ T cell phenotype. These changes were reflected by liver inflammation composed of CD163+/CCR2+ macrophages and CD8+ T cells. LAY SUMMARY: Some patients who receive immunotherapy for cancer develop liver inflammation, which requires cessation of cancer treatment. Herein, we describe ways in which the white blood cells of patients who develop liver inflammation differ from those of patients who receive the same immunotherapy but do not experience liver-related side effects. Targeting some of the pathways we identify may help to prevent or manage this side effect and facilitate cancer treatment.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/immunology , Antineoplastic Agents/adverse effects , CD8-Positive T-Lymphocytes/immunology , Chemical and Drug Induced Liver Injury , Immune Checkpoint Inhibitors/adverse effects , Macrophages/immunology , Receptors, CCR2/immunology , Receptors, CCR7/immunology , Receptors, Cell Surface/immunology , Antineoplastic Agents/administration & dosage , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/prevention & control , Drug Discovery , Female , Humans , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/immunology , Macrophage Activation/immunology , Male , Middle Aged , T-Lymphocytes, Cytotoxic/immunology
3.
Gut ; 67(6): 1155-1167, 2018 06.
Article in English | MEDLINE | ID: mdl-28592438

ABSTRACT

OBJECTIVE: Immune paresis in patients with acute-on-chronic liver failure (ACLF) accounts for infection susceptibility and increased mortality. Immunosuppressive mononuclear CD14+HLA-DR- myeloid-derived suppressor cells (M-MDSCs) have recently been identified to quell antimicrobial responses in immune-mediated diseases. We sought to delineate the function and derivation of M-MDSC in patients with ACLF, and explore potential targets to augment antimicrobial responses. DESIGN: Patients with ACLF (n=41) were compared with healthy subjects (n=25) and patients with cirrhosis (n=22) or acute liver failure (n=30). CD14+CD15-CD11b+HLA-DR- cells were identified as per definition of M-MDSC and detailed immunophenotypic analyses were performed. Suppression of T cell activation was assessed by mixed lymphocyte reaction. Assessment of innate immune function included cytokine expression in response to Toll-like receptor (TLR-2, TLR-4 and TLR-9) stimulation and phagocytosis assays using flow cytometry and live cell imaging-based techniques. RESULTS: Circulating CD14+CD15-CD11b+HLA-DR- M-MDSCs were markedly expanded in patients with ACLF (55% of CD14+ cells). M-MDSC displayed immunosuppressive properties, significantly decreasing T cell proliferation (p=0.01), producing less tumour necrosis factor-alpha/interleukin-6 in response to TLR stimulation (all p<0.01), and reduced bacterial uptake of Escherichia coli (p<0.001). Persistently low expression of HLA-DR during disease evolution was linked to secondary infection and 28-day mortality. Recurrent TLR-2 and TLR-4 stimulation expanded M-MDSC in vitro. By contrast, TLR-3 agonism reconstituted HLA-DR expression and innate immune function ex vivo. CONCLUSION: Immunosuppressive CD14+HLA-DR- M-MDSCs are expanded in patients with ACLF. They were depicted by suppressing T cell function, attenuated antimicrobial innate immune responses, linked to secondary infection, disease severity and prognosis. TLR-3 agonism reversed M-MDSC expansion and innate immune function and merits further evaluation as potential immunotherapeutic agent.


Subject(s)
Acute-On-Chronic Liver Failure/immunology , Anti-Infective Agents/therapeutic use , Immune Tolerance/immunology , Myeloid-Derived Suppressor Cells/immunology , Adult , Cytokines/metabolism , Flow Cytometry , Fucosyltransferases/metabolism , HLA-DR Antigens/metabolism , Humans , Immunophenotyping , Lewis X Antigen/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphocyte Activation/immunology , Middle Aged , Phagocytosis/immunology , Polymerase Chain Reaction , Prognosis
5.
Curr Vasc Pharmacol ; 19(3): 269-279, 2021.
Article in English | MEDLINE | ID: mdl-32188385

ABSTRACT

Non-Alcoholic Fatty Liver Disease (NAFLD) represents an increasing cause of liver disease worldwide. However, notably, the primary cause of morbidity and mortality in patients with NAFLD is cardiovascular disease (CVD), with fibrosis stage being the strongest disease-specific predictor. It is globally projected that NAFLD will become increasingly prevalent, especially among children and younger adults. As such, even within the next few years, NAFLD will contribute considerably to the overall CVD burden. In this review, we discuss the role of NAFLD as an emerging risk factor for CVD. In particular, this article aims to provide an overview of pathological drivers of vascular damage in patients with NAFLD. Moreover, the impact of NAFLD on the development, severity and the progression of subclinical and clinical CVD will be discussed. Finally, the review illustrates current and potential future perspectives to screen for CVD in this high-risk population.


Subject(s)
Cardiovascular Diseases/epidemiology , Non-alcoholic Fatty Liver Disease/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/mortality , Cardiovascular Diseases/physiopathology , Diagnostic Techniques, Cardiovascular , Heart Disease Risk Factors , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/mortality , Non-alcoholic Fatty Liver Disease/physiopathology , Predictive Value of Tests , Prognosis , Risk Assessment
6.
PLoS One ; 15(10): e0240400, 2020.
Article in English | MEDLINE | ID: mdl-33031439

ABSTRACT

BACKGROUND & AIMS: Although metabolic risk factors are associated with more severe COVID-19, there is little evidence on outcomes in patients with non-alcoholic fatty liver disease (NAFLD). We here describe the clinical characteristics and outcomes of NAFLD patients in a cohort hospitalised for COVID-19. METHODS: This study included all consecutive patients admitted for COVID-19 between February and April 2020 at Imperial College Healthcare NHS Trust, with either imaging of the liver available dated within one year from the admission or a known diagnosis of NAFLD. Clinical data and early weaning score (EWS) were recorded. NAFLD diagnosis was based on imaging or past medical history and patients were stratified for Fibrosis-4 (FIB-4) index. Clinical endpoints were admission to intensive care unit (ICU)and in-hospital mortality. RESULTS: 561 patients were admitted. Overall, 193 patients were included in the study. Fifty nine patients (30%) died, 9 (5%) were still in hospital, and 125 (65%) were discharged. The NAFLD cohort (n = 61) was significantly younger (60 vs 70.5 years, p = 0.046) at presentation compared to the non-NAFLD (n = 132). NAFLD diagnosis was not associated with adverse outcomes. However, the NAFLD group had higher C reactive protein (CRP) (107 vs 91.2 mg/L, p = 0.05) compared to non-NAFLD(n = 132). Among NAFLD patients, male gender (p = 0.01), ferritin (p = 0.003) and EWS (p = 0.047) were associated with in-hospital mortality, while the presence of intermediate/high risk FIB-4 or liver cirrhosis was not. CONCLUSION: The presence of NAFLD per se was not associated with worse outcomes in patients hospitalised for COVID-19. Though NAFLD patients were younger on admission, disease stage was not associated with clinical outcomes. Yet, mortality was associated with gender and a pronounced inflammatory response in the NAFLD group.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/mortality , Non-alcoholic Fatty Liver Disease/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Age Factors , Aged , Betacoronavirus , COVID-19 , Cohort Studies , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Female , Hospital Mortality , Humans , Liver/pathology , London/epidemiology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/mortality , Non-alcoholic Fatty Liver Disease/pathology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Sex Factors
7.
World J Gastroenterol ; 25(8): 888-908, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30833797

ABSTRACT

Due to the restrictions of liver transplantation, complication-guided pharmacological therapy has become the mainstay of long-term management of cirrhosis. This article aims to provide a complete overview of pharmacotherapy options that may be commenced in the outpatient setting which are available for managing cirrhosis and its complications, together with discussion of current controversies and potential future directions. PubMed/Medline/Cochrane Library were electronically searched up to December 2018 to identify studies evaluating safety, efficacy and therapeutic mechanisms of pharmacological agents in cirrhotic adults and animal models of cirrhosis. Non-selective beta-blockers effectively reduce variceal re-bleeding risk in cirrhotic patients with moderate/large varices, but appear ineffective for primary prevention of variceal development and may compromise renal function and haemodynamic stability in advanced decompensation. Recent observational studies suggest protective, haemodynamically-independent effects of beta-blockers relating to reduced bacterial translocation. The gut-selective antibiotic rifaximin is effective for secondary prophylaxis of hepatic encephalopathy; recent small trials also indicate its potential superiority to norfloxacin for secondary prevention of spontaneous bacterial peritonitis. Diuretics remain the mainstay of uncomplicated ascites treatment, and early trials suggest alpha-adrenergic receptor agonists may improve diuretic response in refractory ascites. Vaptans have not demonstrated clinical effectiveness in treating refractory ascites and may cause detrimental complications. Despite initial hepatotoxicity concerns, safety of statin administration has been demonstrated in compensated cirrhosis. Furthermore, statins are suggested to have protective effects upon fibrosis progression, decompensation and mortality. Evidence as to whether proton pump inhibitors cause gut-liver-brain axis dysfunction is conflicting. Emerging evidence indicates that anticoagulation therapy reduces incidence and increases recanalisation rates of non-malignant portal vein thrombosis, and may impede hepatic fibrogenesis and decompensation. Pharmacotherapy for cirrhosis should be implemented in accordance with up-to-date guidelines and in conjunction with aetiology management, nutritional optimisation and patient education.


Subject(s)
Ascites/drug therapy , Esophageal and Gastric Varices/drug therapy , Gastrointestinal Hemorrhage/drug therapy , Hepatic Encephalopathy/drug therapy , Hypertension, Portal/drug therapy , Liver Cirrhosis/drug therapy , Adrenergic beta-Antagonists/therapeutic use , Animals , Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/methods , Anticoagulants/therapeutic use , Antidiuretic Hormone Receptor Antagonists/therapeutic use , Ascites/etiology , Ascites/prevention & control , Chronic Disease/drug therapy , Disease Models, Animal , Diuretics/therapeutic use , Esophageal and Gastric Varices/etiology , Esophageal and Gastric Varices/prevention & control , Gastrointestinal Hemorrhage/etiology , Gastrointestinal Hemorrhage/prevention & control , Hepatic Encephalopathy/etiology , Hepatic Encephalopathy/prevention & control , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypertension, Portal/etiology , Hypertension, Portal/prevention & control , Liver Cirrhosis/complications , Proton Pump Inhibitors/therapeutic use , Secondary Prevention/methods , Treatment Outcome
8.
EBioMedicine ; 49: 258-268, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31678004

ABSTRACT

BACKGROUND: Cirrhosis-associated immune dysfunction (CAID) contributes to high sepsis risk in patients with chronic liver disease. Various innate and; to a lesser extent; adaptive immune dysfunctions have been described as contributors to CAID leading to immune-paresis and impaired anti-microbial response in cirrhosis. In this study, we examined the phenotype of CD8+T cells in chronic liver disease with the aim to evaluate changes that might contribute to impaired immune responses. METHODS: Sixty patients with cirrhosis were prospectively recruited for this study. CD8+T cells from peripheral blood, ascites and liver explants were characterized using flow cytometry and immunohistochemistry, respectively. The transcriptional signature of flow-sorted HLA-DR+CD8+T cells was performed using Nanostring™ technology. HLA-DR+CD8+T cells interactions with PBMCs and myeloid cells were tested in vitro. FINDINGS: Peripheral CD8+T cells from cirrhotic patients displayed an altered phenotype characterized by high HLA-DR and TIM-3 surface expression associated with concomitant infections and disease severity, respectively. Paired peritoneal CD8+T cells expressed more pronounced levels of HLA-DR and PD-1 compared to peripheral CD8+T cells. HLA-DR+CD8+T cells were enriched in cirrhotic livers compared to controls. TIM-3, CTLA-4 and PD-1 levels were highly expressed on HLA-DR+CD8+T cells and co-expression of HLA-DR and PD1 was higher in patients with poor disease outcomes. Genes involved in cytokines production and intracellular signalling pathways were strongly down-regulated in HLA-DR+CD8+T cells. In comparison to their HLA-DR- counterparts, HLA-DR+CD8+T cells promoted less proliferation of PBMCs and induced phenotypic and functional dysfunctions in monocytes and neutrophils in vitro. INTERPRETATION: In patients with cirrhosis, CD8+T cells display a phenotypic, functional and transcriptional profile which may contribute to CAID. FUND: This work was supported by Medical Research Council, the Rosetrees Charitable Trust, Robert Tournut 2016 grant (Sociéte Nationale Française de GastroEntérologie), Gilead® sciences, and NIHR Imperial Biomedical Research Centre.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Liver Cirrhosis/immunology , Liver Cirrhosis/pathology , Aged , Apoptosis , Ascites/pathology , Biomarkers/metabolism , Cell Proliferation , Disease Susceptibility , Female , HLA-DR Antigens/metabolism , Humans , Inflammation/pathology , Male , Middle Aged , Myeloid Cells/pathology , Natural Killer T-Cells/drug effects , Natural Killer T-Cells/immunology , Peritoneum/pathology , Phenotype , Severity of Illness Index , Transcription, Genetic , Treatment Outcome
12.
BMJ Case Rep ; 20132013 Jan 09.
Article in English | MEDLINE | ID: mdl-23307461

ABSTRACT

In this case of complex anticoagulation, a 60-year-old woman was treated with low-molecular-weight heparin for pulmonary embolism. As a result of anticoagulation, she then developed an acute subdural haemorrhage identified on CT brain scan requiring craniectomy. Subsequently, while continuing anticoagulation for treatment for pulmonary embolism, she additionally had a large intra-abdominal bleed within and around the psoas muscle identified on abdominal CT scan. Although the increased risk of bleeding is known with anticoagulation therapy, the case of both an intracerebral and intra-abdominal bleed is rare. However, the case does highlight how each individual has a unique physiological response to anticoagulation, in some cases more severe than others.


Subject(s)
Anticoagulants/adverse effects , Hemorrhage/chemically induced , Pulmonary Embolism/drug therapy , Anticoagulants/administration & dosage , Blood Coagulation , Female , Hemorrhage/blood , Hemorrhage/diagnosis , Heparin, Low-Molecular-Weight/administration & dosage , Heparin, Low-Molecular-Weight/adverse effects , Humans , Middle Aged , Pulmonary Embolism/blood , Pulmonary Embolism/diagnosis , Tomography, X-Ray Computed , Warfarin/administration & dosage , Warfarin/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL