Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Neurophysiol ; 121(6): 2126-2139, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30943094

ABSTRACT

The inferior colliculus (IC) is a large midbrain nucleus that integrates inputs from many auditory brainstem and cortical structures. Despite its prominent role in auditory processing, the various cell types and their connections within the IC are not well characterized. To further separate GABAergic and non-GABAergic neuron types according to their physiological properties, we used a mouse model that expresses channelrhodopsin and enhanced yellow fluorescent protein in all GABAergic neurons and allows identification of GABAergic cells by light stimulation. Neuron types were classified upon electrophysiological measurements of the hyperpolarizing-activated current (Ih) in acute brain slices of young adult mice. All GABAergic neurons from our sample displayed slow-activating Ih with moderate amplitudes, whereas a subset of excitatory neurons showed fast-activating Ih with large amplitudes. This is in agreement with our finding that immunoreactivity against the fast-gating hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) channel was present around excitatory neurons, whereas the slow-gating HCN4 channel was found perisomatically around most inhibitory neurons. Ih properties and neurotransmitter types were correlated with firing patterns to depolarizing current pulses. All GABAergic neurons displayed adapting firing patterns very similar to the majority of glutamatergic neurons. About 15% of the glutamatergic neurons showed an onset spiking pattern, always in combination with large and fast Ih. We conclude that HCN channel subtypes are differentially distributed in IC neuron types and correlate with neurotransmitter type and firing pattern. In contrast to many other brain regions, membrane properties and firing patterns were similar in GABAergic neurons and about one-third of the excitatory neurons. NEW & NOTEWORTHY Neuron types in the central nucleus of the auditory midbrain are not well characterized regarding their transmitter type, ion channel composition, and firing pattern. The present study shows that GABAergic neurons have slowly activating hyperpolarizing-activated current (Ih) and an adaptive firing pattern whereas at least four types of glutamatergic neurons exist regarding their Ih properties and firing patterns. Many of the glutamatergic neurons were almost indistinguishable from the GABAergic neurons regarding Ih properties and firing pattern.


Subject(s)
Electrophysiological Phenomena/physiology , GABAergic Neurons/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Inferior Colliculi/physiology , Neurons/physiology , Animals , GABAergic Neurons/metabolism , Glutamates/metabolism , Inferior Colliculi/cytology , Inferior Colliculi/metabolism , Mice , Neurons/metabolism
2.
Article in English | MEDLINE | ID: mdl-26293318

ABSTRACT

In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.


Subject(s)
Action Potentials/physiology , Ganglia, Invertebrate/physiology , Gryllidae/physiology , Hearing/physiology , Neurons/physiology , Acoustic Stimulation , Animals , Auditory Pathways/physiology , Computer Simulation , Female , Linear Models , Models, Neurological , Nonlinear Dynamics
3.
Microb Inform Exp ; 1(1): 6, 2011 Jun 27.
Article in English | MEDLINE | ID: mdl-22587847

ABSTRACT

The biochemical and physical factors controlling protein expression level and solubility in vivo remain incompletely characterized. To gain insight into the primary sequence features influencing these outcomes, we performed statistical analyses of results from the high-throughput protein-production pipeline of the Northeast Structural Genomics Consortium. Proteins expressed in E. coli and consistently purified were scored independently for expression and solubility levels. These parameters nonetheless show a very strong positive correlation. We used logistic regressions to determine whether they are systematically influenced by fractional amino acid composition or several bulk sequence parameters including hydrophobicity, sidechain entropy, electrostatic charge, and predicted backbone disorder. Decreasing hydrophobicity correlates with higher expression and solubility levels, but this correlation apparently derives solely from the beneficial effect of three charged amino acids, at least for bacterial proteins. In fact, the three most hydrophobic residues showed very different correlations with solubility level. Leu showed the strongest negative correlation among amino acids, while Ile showed a slightly positive correlation in most data segments. Several other amino acids also had unexpected effects. Notably, Arg correlated with decreased expression and, most surprisingly, solubility of bacterial proteins, an effect only partially attributable to rare codons. However, rare codons did significantly reduce expression despite use of a codon-enhanced strain. Additional analyses suggest that positively but not negatively charged amino acids may reduce translation efficiency in E. coli irrespective of codon usage. While some observed effects may reflect indirect evolutionary correlations, others may reflect basic physicochemical phenomena. We used these results to construct and validate predictors of expression and solubility levels and overall protein usability, and we propose new strategies to be explored for engineering improved protein expression and solubility.

SELECTION OF CITATIONS
SEARCH DETAIL