Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Saudi Pharm J ; 32(6): 102096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757071

ABSTRACT

The aim of the current study was to explore the potential of human plasma-derived exosomes as versatile carriers for drug delivery by employing various active and passive loading methods. Exosomes were isolated from human plasma using differential centrifugation and ultrafiltration method. Drug loading was achieved by employing sonication and freeze thaw methods, facilitating effective drug encapsulation within exosomes for delivery. Each approach was examined for its effectiveness, loading efficiency and ability to preserve membrane stability. Methotrexate (MTX), a weak acid model drug was loaded at a concentration of 2.2 µM to exosomes underwent characterization using various techniques such as particle size analysis, transmission electron microscopy and drug loading capacity. Human plasma derived exosomes showed a mean size of 162.15 ± 28.21 nm and zeta potential of -30.6 ± 0.71 mV. These exosomes were successfully loaded with MTX demonstrated a better drug encapsulation of 64.538 ± 1.54 % by freeze thaw method in comparison 55.515 ± 1.907 % by sonication. In-vitro drug release displayed 60 % loaded drug released within 72 h by freeze thaw method that was significantly different from that by sonication method i.e., 99 % within 72 h (p value 0.0045). Moreover, cell viability of exosomes loaded by freeze thaw method was significantly higher than that by sonication method (p value 0.0091) suggested that there was membrane disruption by sonication method. In conclusion, this study offers valuable insights into the potential of human plasma-derived exosomes loaded by freeze thaw method suggest as a promising carrier for improved drug loading and maintenance of exosomal membrane integrity.

2.
Molecules ; 28(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36985803

ABSTRACT

BACKGROUND: Cefixime (CFX) belongs to a group of third-generation cephalosporin antibiotics with low water solubility and low intestinal permeability, which ultimately leads to significantly low bioavailability. AIM: This study aimed to increase solubility, improve drug release, and intestinal permeability of CFX by loading into SEDDS. METHODS: Suitable excipients were selected based on drug solubility, percent transmittance, and emulsification efficiency. Pseudo-ternary phase diagram was fabricated for the identification of effective self-emulsification region. The best probably optimized formulations were further assessed for encumbered drug contents, emulsification time, cloud point measurement, robustness to dilution, mean droplet size, zeta potential, polydispersity index (PDI), and thermodynamic and chemical stability. Moreover, in vitro drug release studies and ex vivo permeation studies were carried out and apparent drug permeability Papp of different formulations was compared with the marketed brands of CFX. RESULTS: Amongst the four tested SEDDS formulations, F-2 formulation exhibited the highest drug loading of 96.32%, emulsification time of 40.37 ± 3 s, mean droplet size of 19.01 ± 1.12 nm, and demonstrated improved long-term thermodynamic and chemical stability when stored at 4 °C. Release studies revealed a drug release of 97.32 ± 4.82% within 60 min in simulated gastric fluid. Similarly, 97.12 ± 5.02% release of CFX was observed in simulated intestinal fluid within 120 min; however, 85.13 ± 3.23% release of CFX was observed from the marketed product. Ex vivo permeation studies displayed a 2.7-fold increase apparent permeability compared to the marketed product in 5 h. CONCLUSION: Owing to the significantly improved drug solubility, in vitro release and better antibacterial activity, it can be assumed that CFX-loaded SEDDS might lead to an increased bioavailability and antibacterial activity, possibly leading to improved therapeutic effectiveness.


Subject(s)
Drug Delivery Systems , Surface-Active Agents , Cefixime , Surface-Active Agents/chemistry , Emulsions/chemistry , Solubility , Drug Liberation , Administration, Oral , Anti-Bacterial Agents/pharmacology , Permeability , Biological Availability , Particle Size
3.
AAPS PharmSciTech ; 24(7): 194, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752361

ABSTRACT

The objective of this study was to generate fluconazole-loaded mucoadhesive nanogels to address the problem of hydrophobicity of fluconazole (FL). An inclusion complex was formulated with sulfhydryl-ß-CD (SH-ß-CD) followed by nanogels formation by a Schiff base reaction of carbopol 940 (CA-940) and gelatin (GE). For characterization, PXRD, FT-IR analysis, drug content, and phase solubility studies were performed. Similarly, nanogels were assessed for particle size, zeta potential, organoleptic, and spreadability studies. Moreover, drug contents, rheological, in vitro drug permeation, release kinetics, toxicity, and stability studies of nanogels were performed. Furthermore, mucoadhesive characteristics over the buccal mucosal membrane of the goat were evaluated. The nanogels formulated with a higher amount of CA-940 and subsequently loaded with the inclusion complexes of FL showed promising results. PXRD and FT-IR analysis confirmed the physical complexes by displaying a reduction in the intensity of peaks of FL. The average particle size of nanogels was in the range of 257 to 361 nm. The highest drug content of 88% was encapsulated within the FL-SH-ß-CD complex. All formulations at 0.5-1% concentration displayed no toxicity to the Caco-2 cell lines. Nanogels loaded with FL-SH-ß-CD complexes showed 18-fold improved mucoadhesion on the buccal mucous membrane of the goat when compared to simple nanogels. The in vitro permeation study exhibited significantly enhanced permeation and first-order concentration-dependent drug release was observed. On the bases of these findings, we can conclude that a mucoadhesive nanogel-based drug delivery system can be an ideal therapy for candidiasis.

4.
Pak J Pharm Sci ; 34(1(Supplementary)): 313-319, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34275856

ABSTRACT

Cyclosporine A (CsA) is an immunosuppressant agent. Two niosomal formulations of CsA, FTS and FSB were formulated. Both formulations were studied in terms of size, polydispersity index (PDI), morphology and entrapment efficacy etc. Niosomal formulations FTS and FSB and plain aqueous dispersion were given to three assemblies of Albino rabbits (n=8 per group). CsA levels in plasma were determined at appropriate time intervals and pharmacokinetic parameters were evaluated. The percentage entrapment efficiencies of FTS and FSB were found to be 77.29 and 89.31% for respectively. Transmission electron microscopy results indicated spherical nature of niosomes. In vivo studies demonstrated that the value of Cmax for the FSB formulation was 1968.419 ng/ml and it was 1498.951 ng/ml and 1073.87 ng/ml for FTS and aqueous dispersion of CsA (control) respectively. It was found that both niosomal formulation FTS & FSB presented significantly high (p<0.05) Cmax, AUC0-t, MRT 0-inf and half-life (t1/2) as associated to plain drug dispersion. However niosomal formulation FSB exhibited better in-vivo performance as compared to FTS. It was established that CsA can be successfully entrapped in niosomes. So niosomes are promising vehicle for CsA oral delivery.


Subject(s)
Cyclosporine/administration & dosage , Cyclosporine/pharmacokinetics , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Drug Carriers , Drug Compounding , Liposomes , Rabbits
5.
Mol Pharm ; 17(10): 3709-3719, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32841038

ABSTRACT

The aim of this study was to develop hydrophobic ionic drug polymer complexes in order to provide sustained drug release from self-emulsifying drug delivery systems (SEDDS). Captopril (CTL) was used as an anionic model drug to form ionic complexes with the cationic polymers Eudragit RS, RL, and E. Complexes of polymer to CTL charge ratio 1:1, 2:1, and 4:1 were incorporated in two SEDDS, namely FA which was 40% Kolliphor RH 40, 20% Kolliphor EL, and 40% castor oil and FB, which was 40% Kolliphor RH 40, 30% glycerol, 15% Kolliphor EL, and 15% castor oil. Blank and complex loaded SEDDS were characterized regarding their droplet size, polydispersity index (PDI), and zeta potential. Resazurin assay was performed on Caco-2 cells to evaluate the biocompatibility of SEDDS. Release of CTL from SEDDS was determined in release medium containing 0.2 mg/mL of 5,5'-dithiobis(2-nitrobenzoic acid) (DNTB) allowing quantification of free drug released into solution via a thiol/disulfide exchange reaction between CTL and DNTB forming a yellow dye. The droplet size of SEDDS FA and SEDDS FB were in the range of 100 ± 20 nm and 40 ± 10 nm, respectively, with a PDI < 0.5. The zeta potential of SEDDS FA and SEDDS FB increased after the incorporation of complexes. Cell viability remained above 80% after incubation with SEDDS FA and SEDDS FB in a concentration of 1% and 3% for 4 h. Without any polymer, CTL was entirely released from both SEDDS within seconds. In contrast, the higher the cationic lipophilic polymer to CTL ratio in SEDDS, the more sustained was the release of CTL. Among the polymers which were evaluated, Eudragit RL provided the most sustained release. SEDDS FA containing Eudragit RL and CTL in a ratio of 1:1 released 64.78 ± 8.28% of CTL, whereas SEDDS FB containing the same complex showed a release of 91.85 ± 1.17% within 1 h. Due to the formation of lipophilic ionic polymer complexes a sustained drug release from oily droplets formed by SEDDS can be achieved. Taking into account that drugs are otherwise instantly released from SEDDS, results of this study might open the door for numerous additional applications of SEDDS for which a sustained drug release is essential.


Subject(s)
Delayed-Action Preparations/pharmacokinetics , Drug Carriers/chemistry , Emulsifying Agents/chemistry , Caco-2 Cells , Captopril/administration & dosage , Captopril/chemistry , Captopril/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Drug Liberation , Emulsions , Humans , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry
6.
Pak J Pharm Sci ; 33(1(Special)): 449-457, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32173643

ABSTRACT

Topical candidiasis is a known skin fungal infection which is usually treated by conventional dosage forms such as cream, gel, emulgel which are having numerous adverse effects on skin. To overcome such disadvantages, different novel drug delivery systems have been considered. Polymer based nano-particulate systems have shown good skin penetration after topical application. Therefore, in the present study the main focus was on the pathology, pathogenesis, and consequently topical treatment of candidiasis. Nanogel containing miconazole have been prepared from the natural polymers i.e. gelatin and chitosan. The nanogel of miconazole (100 mg) nitrate was formulated by modified emulsification-diffusion technique and characterized for different parameters. From all the seven nanogel formulations named as F1 to F7, F1 (Gelatin and Chitosan in the percentage of 82.85 and 17.15 respectively) have been selected as model formulations. The reason behind that was as per ICH stability guideline, the formulations F1 was found optimum and stable. Miconazole nanogel formulations F1 also showed the maximum release i.e. 78 % approximately. XRD showed the formulated nanogel was in crystalline shape. In summary, the miconazole nanogel drug delivery systems have two main advantages i.e. they are topical preparation as well as nano sized. It can be postulated that nanogel may be a best approach to treat the fungal skin diseases.


Subject(s)
Antifungal Agents/administration & dosage , Drug Delivery Systems , Miconazole/administration & dosage , Animals , Drug Compounding , Drug Stability , Female , Mice , Miconazole/chemistry , Nanogels , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Viscosity
7.
Mol Pharm ; 16(6): 2817-2825, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31070926

ABSTRACT

The aim of the present study was to develop zeta potential-changing polyphosphate nanoparticles (pp-NPs) in order to overcome the diffusion barrier of the mucus gel layer and to provide an enhanced cellular uptake. pp-NPs were obtained by in situ gelation between cationic polyethylene imine and anionic polyphosphate. The resulting pp-NPs were characterized with regard to size and zeta potential. Phosphate release studies were carried out by incubation of pp-NPs with isolated as well as cell-associated intestinal alkaline phosphatase (IAP) and quantified by malachite green assay. Correspondingly, change in the zeta potential was measured, and pp-NPs were analyzed by scanning electron microscopy studies. Mucus permeation studies were performed with porcine intestinal mucus via the transwell insert method and rotating tube method. Furthermore, cell viability and cellular uptake were investigated on Caco-2 cells. The resulting pp-NPs displayed a mean size of 269.16 ± 1.12 nm and a zeta potential between -9 and -10 mV in the characterization studies. Within 4 h, a remarkable amount of phosphate was released from pp-NPs incubated with isolated IAP as well as cell-associated IAP and zeta potential raised up from -9.14 ± 0.45 to -1.75 ± 0.46 mV. Compared with dephosphorylated polyphosphate nanoparticles (de-pp-NPs), a significantly enhanced mucus permeation of pp-NPs was observed. Moreover, pp-NPs did not exhibit cytotoxicity. Cellular uptake increased 2.6-fold by conversion of pp-NPs to de-pp-NPs following enzymatic cleavage. Taking the comparatively simple preparation method and the high mucus-permeating properties of pp-NPs and high cellular uptake properties of de-pp-NPs into account, these nanocarriers might be promising novel tools for mucosal drug delivery.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Polyethyleneimine/chemistry , Polyphosphates/chemistry , Animals , Caco-2 Cells , Cell Survival/physiology , Humans , Intestines , Microscopy, Electron, Scanning , Particle Size , Swine
8.
Pak J Pharm Sci ; 32(2): 505-514, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31081759

ABSTRACT

Echinops echinatus is traditionally an important plant that finds its extensive use as a diuretic, anti-inflammatory, anti-pyretic, nerve tonic, abortifacient, aphrodisiac, antiasthmatic, and antidiabetic agent. The current study investigates protection against the hyperglycemia and dyslipidemia in alloxan-induced (type I diabetes) and fructose-fed insulin resistance (type II diabetes) models of diabetes treated with aqueous methanolic root extract of E. echinatus (Ee.Cr). Albino rats were treated orally with Ee.Cr at doses 100, 300 and 500mg/kg. The fasting blood glucose was measured by glucometer, while standard kits were used to determine the levels of serum total cholesterol, triglycerides and HDL. The administration of Ee.Cr significantly (P<0.001) reduced the FBG concentration in a dose-dependent pattern in alloxan-induced and fructose-fed diabetic rats. The Ee.Cr also corrected the dyslipidemia associated with fructose and alloxan-induced diabetes by significantly (P<0.001) decreasing the concentration of serum total cholesterol, triglycerides, and LDL and by increasing HDL concentration. Ee.Cr also significantly (P<0.001) improved the glucose tolerance in fructose-fed rats. We conclude that Ee.Cr has antidiabetic and antidyslipidemic effects in both insulin-dependent alloxan-induced diabetes and fructose-induced insulin resistance diabetes rat models.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Echinops Plant/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Alloxan/toxicity , Animals , Body Weight/drug effects , Cholesterol/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Female , Fructose/adverse effects , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/toxicity , Male , Mice , Plant Extracts/chemistry , Plant Extracts/toxicity , Rats, Sprague-Dawley , Toxicity Tests, Acute , Triglycerides/blood
9.
Planta Med ; 83(14-15): 1141-1148, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28388787

ABSTRACT

Diabetes mellitus is a chronic disease and one of the most important public health challenges facing mankind. Fagonia cretica is a medicinal plant used widely in the Punjab in Pakistan. A recent survey has demonstrated that traditional healers and herbalists frequently use this plant to treat diabetes. In the current study, the traditional medicine was prepared as a tea, and the profile of the main metabolites present in the traditional medicine was analysed via LC/MS/MS. The extract was shown to contain a number of phenolic glycosides including quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, kaempferol-3-O-glycoside, kaempferol-3(6'-malonylglucoside), isorhamnetin-3-O-rutinoside, and isorhamnetin 3-(6″-malonylglucoside) in addition to two unidentified sulphonated saponins. The traditional medicine inhibits α-glucosidase in vitro with an IC50 of 4.62 µg/mL. The hypoglycaemic effect of the traditional medicine was evaluated in normoglycaemic and streptozotocin-treated diabetic rats, using glibenclamide as an internal control. The preparation (250 or 500 mg/kg body weight) was administered once a day for 21 consecutive days. The dose of 500 mg/kg was effective in the management of the disease, causing a 45 % decrease in the plasma glucose level at the end of the experimental period. Histological analysis of pancreatic sections confirmed that streptozotocin/nictotinamide treatment caused destruction of pancreatic islet cells, while pancreatic sections from the treatment groups showed that both the extract and glibenclamide partially prevented this deterioration. The mechanism of this protective effect is unclear. However, such a finding suggests that ingestion of the tea could confer additional benefits and should be investigated further.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Zygophyllaceae/chemistry , Animals , Chromatography, Liquid , Diabetes Mellitus, Experimental/chemically induced , Female , Glycosides/metabolism , Hydroxybenzoates/metabolism , Hypoglycemic Agents/isolation & purification , Medicine, Traditional , Pakistan , Plant Extracts/isolation & purification , Plants, Medicinal , Rats, Wistar , Streptozocin , Tandem Mass Spectrometry
10.
J Pak Med Assoc ; 66(11): 1490-1493, 2016 11.
Article in English | MEDLINE | ID: mdl-27812076

ABSTRACT

Encapsulated papillary carcinoma (EPC) is a rare low grade carcinoma of the breast with excellent prognosis. This case series focuses on its histopathological and clinical characteristics in our material. Cases of papillary lesions of breast from 1st January 2012 to 30th December 2014 were retrieved from the hospital database. A total of 8 cases were categorized as EPC. Mean age of patients was 66 years. Breast lump with tumour size ranged from 1.5 to 5.0cm, and was the presentation in 75% of cases. Histopathology showed a well circumscribed lesion within a dilated duct comprising of fibro vascular cores lined by neoplastic cells, surrounded by thick fibrous capsule. Immunohistochemistry, for antibody panel p63, ASMA and CK 5/6 were negative for myoepithelial cells. Invasive carcinoma was seen in 3 (37.5%) with associated DCIS in 4 (50%) cases. Meticulous gross, attention to morphology and correct interpretation of immunohistochemistry are imperative for accurate diagnosis.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Papillary/pathology , Aged , Biomarkers, Tumor , Carcinoma in Situ , Carcinoma, Intraductal, Noninfiltrating , Female , Humans , Immunohistochemistry
11.
Int J Biol Macromol ; 263(Pt 1): 130160, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367777

ABSTRACT

The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 µM) than pure CLA (IC50 = 17.15 ± 5.11 µM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.


Subject(s)
Chitosan , Hydrolyzable Tannins , Nanoparticles , Neoplasms , Animals , Mice , Hyaluronic Acid , Molecular Docking Simulation , Drug Delivery Systems
12.
Pak J Pharm Sci ; 26(6): 1229-35, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24191331

ABSTRACT

This study involves the design and characterization of Nateglinide (NAT) microspheres to enhance patient compliance. Ionic gelation technique was used to prepare Nateglinide Microspheres by using rate controlling polymers Carbopol-940 and Hydroxypropylmethyl cellulose (HPMC). Shape and surface were evaluated with Scanning electron microscopy (SEM). Percentage Yield, Particle size analysis, Encapsulating Efficiency, Micromeritic analysis, Fourier Transform Infra-Red Spectroscopy (FTIR), Differential Scanning Colorimetry (DSC) were done for characterization of Microspheres. Drug release studies were performed at pH 1.2 and 7.2 using USP dissolution type-II apparatus and release rates were analyzed by the application of different pharmacokinetic models. The size of microspheres was found to be varied from 781µm to 853µm. Rheological studies proved excellent flow behavior while percentage yield was found to be varied from 72% to 79%. Absence of drug-polymers interactions was confirmed from FTIR and DSC results. The microspheres prepared with sodium alginate showed cracks while microspheres obtained from blend of Carbopol-940 plus sodium alginate were smooth and spherical. Maximum entrapment efficiency (71.4%) was achieved for Microspheres with Carbopol-940. The greater retardation in drug release was observed for microspheres containing Carbopol-940 and release pattern followed Higuchi kinetics model and negligible drug release was observed at pH 1.2.


Subject(s)
Cyclohexanes/chemistry , Hypoglycemic Agents/chemistry , Phenylalanine/analogs & derivatives , Acrylic Resins , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Cyclohexanes/administration & dosage , Gels/chemistry , Hypromellose Derivatives , Methylcellulose/analogs & derivatives , Microscopy, Electron, Scanning , Microspheres , Nateglinide , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared
13.
PLoS One ; 18(6): e0286668, 2023.
Article in English | MEDLINE | ID: mdl-37294790

ABSTRACT

Biopharmaceutical classification systems (BCS) class III drugs belongs to a group of drugs with high solubility in gastrointestinal (GI) fluids and low membrane permeability result in significantly low bioavailability. Self-emulsifying drug delivery systems (SEDDS) considered a suitable candidate to enhance the bioavailability of poorly soluble drugs by improving their membrane permeability, however, incorporating hydrophilic drugs in to these carriers remained a great challenge. The aim of this study was to develop hydrophobic ion pairs (HIPs) of a model BCS class-III drug tobramycin (TOB) in order to incorporate into SEDDS and improve its bioavailability. HIPs of TOB were formulated using anionic surfactants sodium docusate (DOC) and sodium dodecanoate (DOD). The efficiency of HIPs was estimated by measuring the concentration of formed complexes in water, zeta potential determination and log P value evaluation. Solubility studies of HIPs of TOB with DOC were accomplished to screen the suitable excipients for SEDDS development. Consequently, HIPs of TOB with DOC were loaded into SEDDS and assessed the log DSEDDS/release medium and dissociation of these complexes at different intestinal pH over time. Moreover, cytotoxic potential of HIPs of TOB and HIPs loaded SEDDS formulations was evaluated. HIPs of TOB with DOC exhibited the maximum precipitation efficiency at a stoichiometric ratio of 1:5. Log P of HIPs of TOB improved up to 1500-fold compared to free TOB. Zeta potential of TOB was shifted from positive to negative during hydrophobic ion pairing (HIP). HIPs of TOB with DOC was loaded at a concentration of 1% (w/v) into SEDDS formulations. Log DSEDDS/release medium of loaded complexes in to oily droplets was above 2 and dissociated up to 20% at various pH within 4 h. Finding of this study suggested that improvement of the lipophilic character of BCS class-III drugs followed by incorporation into oily droplets can be deliberated as a promising tool to enhance the permeation across biological membranes.


Subject(s)
Biological Products , Emulsions/chemistry , Drug Delivery Systems , Surface-Active Agents/chemistry , Dioctyl Sulfosuccinic Acid/chemistry , Biological Availability , Solubility , Administration, Oral
14.
Case Rep Infect Dis ; 2023: 6608279, 2023.
Article in English | MEDLINE | ID: mdl-36710909

ABSTRACT

Methods: We report the case of a 73-year-old Saudi female who presented with severe thrombocytopenia and mild autoimmune hemolytic anemia associated with brucellosis. The coexistence of published cases of two hematological disorders with brucellosis is rare. Results: Despite the initial treatment with eltrombopag and intravenous immunoglobulin (IVIG), our patient's platelets count remained low and significantly improved after initiation of brucellosis treatment in the form of rifampicin and doxycycline. Discussion. We conclude by reviewing the case that in many parts of Saudi Arabia, brucellosis remains a prevalent infection. Hence, it should be considered as a possible diagnosis in febrile individuals with no localizing indications and the presence of severe thrombocytopenia in acute febrile illness. Although it is a rare association, it could be related to brucellosis. Conclusion: This is our region's first published case of severe thrombocytopenia and mild autoimmune hemolytic anemia associated with brucellosis. It contributes to the literature on the successful use of rifampicin and doxycycline to treat hematological disorders associated with brucellosis.

17.
Int J Biol Macromol ; 202: 332-344, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35041883

ABSTRACT

This study aimed to develop the Fenugreek seed mucilage-based pH-responsive hydrogel system in order to improve the oral bioavailability of methotrexate (MTX). Fenugreek seed mucilage (FSM) was extracted from Trigonella foenum-graecum seeds. F1-F9 formulations of pH-responsive hydrogels were prepared using various FSM ratios, methacrylic acid (MAA), and methylene bis acrylamide (MBA) via free radical polymerization technique. Swelling behavior and in vitro drug release studies of prepared hydrogels were evaluated. Toxicity studies of prepared hydrogels were performed on normal cells and on Wistar rats (n = 6). Moreover, in vivo pharmacokinetics parameters were studied on albino rabbits. Hydrogels formation was confirmed by FTIR analysis, thermal analysis and SEM studies. The maximum swelling of hydrogel was found to be 384.7% at pH 7.4. MTX-loaded hydrogel showed the controlled release of MTX up to 24 h following Super Case II transport. Prepared hydrogels exhibited no toxicity in normal cells as well as in experimental subjects. MTX loaded hydrogels exhibited less inhibition compared to free MTX on Hela cells. In Vivo studies revealed 7.5-fold improved oral bioavailability of MTX with higher Cmax (928 ng/mL). These results indicate that the pH-responsive hydrogel system based on FSM is a promising tool for the controlled delivery of MTX.


Subject(s)
Trigonella , Animals , Biological Availability , Drug Liberation , HeLa Cells , Humans , Hydrogels , Hydrogen-Ion Concentration , Methacrylates , Methotrexate/pharmacology , Rabbits , Rats , Rats, Wistar , Seeds
18.
Pharmaceutics ; 14(9)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145657

ABSTRACT

Intravesical drug delivery is a direct drug delivery approach for the treatment of various bladder diseases. The human urinary bladder has distinctive anatomy, making it an effective barrier against any toxic agent seeking entry into the bloodstream. This screening function of the bladder derives from the structure of the urothelium, which acts as a semi-permeable barrier. However, various diseases related to the urinary bladder, such as hyperactive bladder syndrome, interstitial cystitis, cancer, urinary obstructions, or urinary tract infections, can alter the bladder's natural function. Consequently, the intravesical route of drug delivery can effectively treat such diseases as it offers site-specific drug action with minimum side effects. Intravesical drug delivery is the direct instillation of medicinal drugs into the urinary bladder via a urethral catheter. However, there are some limitations to this method of drug delivery, including the risk of washout of the therapeutic agents with frequent urination. Moreover, due to the limited permeability of the urinary bladder walls, the therapeutic agents are diluted before the process of permeation, and consequently, their efficiency is compromised. Therefore, various types of nanomaterial-based delivery systems are being employed in intravesical drug delivery to enhance the drug penetration and retention at the targeted site. This review article covers the various nanomaterials used for intravesical drug delivery and future aspects of these nanomaterials for intravesical drug delivery.

19.
Polymers (Basel) ; 13(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34960901

ABSTRACT

Epalrestat (EPL) is an aldose reductase inhibitor with poor aqueous solubility that affects its therapeutic efficacy. The research study was designed to prepare epalrestat-cyclodextrins (EPL-CDs) inclusion complexes to enhance the aqueous solubility by using beta-cyclodextrin (ß-CD) and sulfobutyl ether7 ß-CD (SBE7 ß-CD). Furthermore, polymeric nanoparticles (PNPs) of EPL-CDs were developed using chitosan (CS) and sodium tripolyphosphate (sTPP). The EPL-CDs complexed formulations were then loaded into chitosan nanoparticles (CS NPs) and further characterized for different physico-chemical properties, thermal stability, drug-excipient compatibility and acute oral toxicity studies. In-silico molecular docking of cross-linker with SBE7 ß-CD was also carried out to determine the binding site of the CDs with the cross-linker. The sizes of the prepared NPs were laid in the range of 241.5-348.4 nm, with polydispersity index (PDI) ranging from 0.302-0.578. The surface morphology of the NPs was found to be non-porous, smooth, and spherical. The cumulative percentage of drug release from EPL-CDs loaded CS NPs was found to be higher (75-88%) than that of the pure drug (25%). Acute oral toxicity on animal models showed a biochemical, histological profile with no harmful impact at the cellular level. It is concluded that epalrestat-cyclodextrin chitosan nanoparticles (EPL-CDs-CS NPs) with improved solubility are safe for oral administration since no toxicity was reported on vital organs in rabbits.

20.
J Colloid Interface Sci ; 585: 126-137, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33279695

ABSTRACT

HYPOTHESIS: Simple zwitterions used as auxiliary agents might have the potential to change the zeta potential of oil-in-water (o/w) nanoemulsions on the mucosa. EXPERIMENTS: The zwitterion phosphorylated tyramine (p-Tyr) was synthesized by phosphorylation of Boc-tyramine (Boc-Tyr) using phosphoryl chloride (POCl3). It was incorporated with 2% (m/v) in a self-emulsifying lipophilic phase comprising Captex 35, Cremophor EL, Capmul MCM and glycerol 85 at a ratio of 30:30:30:10 v/v. Phosphate release and resulting change in zeta potential were evaluated by incubating p-Tyr containing nanoemulsion with isolated intestinal alkaline phosphatase (AP). Mucus permeating behavior was evaluated across mucus obtained from porcine small intestinal mucosa. Subsequently, cellular uptake studies were accomplished on Caco-2 cells. FINDINGS: The p-Tyr loaded nanoemulsion exhibited a mean droplet size of 43 ± 1.7 nm and zeta potential of -8.40 mV. Phosphate moieties were rapidly cleaved from p-Tyr loaded nanoemulsions after incubation with isolated AP resulting in a shift in zeta potential from -8.40 mV to +1.2 mV. p-Tyr loaded nanoemulsion revealed a significantly (p ≤ 0.001) improved mucus permeation compared to the same nanoemulsion having been pre-treated with AP. Cellular uptake of the zeta potential changing oily droplets was 2.4-fold improved. Phosphorylated zwitterions seem to be an alternative to cationic surfactants and considered as promising auxiliary agents for zeta potential changing nanoemulsions.


Subject(s)
Drug Delivery Systems , Mucus , Animals , Caco-2 Cells , Emulsions , Humans , Permeability , Swine
SELECTION OF CITATIONS
SEARCH DETAIL