Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Cancer Res ; : OF1-OF13, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264104

ABSTRACT

Breast cancer is the second leading cause of death in women globally, and it remains a health burden due to poor therapy response, cancer cell drug resistance, and the debilitating side effects associated with most therapies. One approach to addressing the need to improve breast cancer therapies has been to elucidate the mechanism(s) underpinning this disease to identify key drivers that can be targeted in molecular therapies. The T-box transcription factor, TBX3, is upregulated in breast cancer, in which it contributes to important oncogenic processes, and it has been validated as a potential therapeutic target. Here, we investigated the molecular mechanisms that upregulate TBX3 in breast cancer, and we show that it involves transcriptional activation by c-Myc, post-translational modification by AKT1 and AKT3, and interaction with the molecular chaperone Hsc70. Together, the results from this study provide evidence that c-Myc, AKT, Hsc70, and TBX3 form part of an important oncogenic pathway in breast cancer and thus reveal versatile ways of interfering with the oncogenic activity of TBX3 for the treatment of this neoplasm. Implications: Targeting the c-Myc/AKT/TBX3/Hsc70 signaling axis may be an effective treatment strategy for TBX3-driven breast cancer.

2.
Am J Cancer Res ; 11(11): 5680-5700, 2021.
Article in English | MEDLINE | ID: mdl-34873487

ABSTRACT

Sarcomas are diverse cancers of mesenchymal origin, with compromised clinical management caused by insufficient diagnostic biomarkers and limited treatment options. The transcription factor TBX3 is upregulated in a diverse range of sarcoma subtypes, where it plays a direct oncogenic role, and it may thus represent a novel therapeutic target. To identify versatile ways to target TBX3, we performed affinity purification coupled by mass spectrometry to identify putative TBX3 protein cofactors that regulate its oncogenic activity in sarcomas. Here we identify and validate the multifunctional phosphoprotein nucleolin as a TBX3 cofactor. We show that nucleolin is co-expressed with TBX3 in several sarcoma subtypes and their expression levels positively correlate in sarcoma patients which are associated with poor prognosis. Furthermore, we demonstrate that nucleolin and TBX3 interact in chondrosarcoma, liposarcoma and rhabdomyosarcoma cells where they act together to enhance proliferation and migration and regulate a common set of tumor suppressor genes. Importantly, the nucleolin targeting aptamer, AS1411, exhibits selective anti-cancer activity in these cells and mislocalizes TBX3 and nucleolin to the cytoplasm which correlates with the re-expression of the TBX3/nucleolin target tumor suppressors CDKN1A (p21CIP1) and CDKN2A (p14ARF). Our findings provide the first evidence that TBX3 requires nucleolin to promote features of sarcomagenesis and that disruption of the oncogenic TBX3-nucleolin interaction by AS1411 may be a novel approach for treating sarcomas.

SELECTION OF CITATIONS
SEARCH DETAIL