Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798494

ABSTRACT

Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize human applications. With orders-of-magnitude improvements in volumetric efficiency over other BCI technologies, we developed a 50-µm-thick, mechanically flexible micro-electrocorticography (µECoG) BCI, integrating 256×256 electrodes, signal processing, data telemetry, and wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate containing 65,536 recording and 16,384 stimulation channels, from which we can simultaneously record up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly powered, communicating bi-directionally with an external relay station outside the body. We demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain signals at high spatiotemporal resolution.

2.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37292670

ABSTRACT

In recent years, most exciting inputs (MEIs) synthesized from encoding models of neuronal activity have become an established method to study tuning properties of biological and artificial visual systems. However, as we move up the visual hierarchy, the complexity of neuronal computations increases. Consequently, it becomes more challenging to model neuronal activity, requiring more complex models. In this study, we introduce a new attention readout for a convolutional data-driven core for neurons in macaque V4 that outperforms the state-of-the-art task-driven ResNet model in predicting neuronal responses. However, as the predictive network becomes deeper and more complex, synthesizing MEIs via straightforward gradient ascent (GA) can struggle to produce qualitatively good results and overfit to idiosyncrasies of a more complex model, potentially decreasing the MEI's model-to-brain transferability. To solve this problem, we propose a diffusion-based method for generating MEIs via Energy Guidance (EGG). We show that for models of macaque V4, EGG generates single neuron MEIs that generalize better across architectures than the state-of-the-art GA while preserving the within-architectures activation and requiring 4.7x less compute time. Furthermore, EGG diffusion can be used to generate other neurally exciting images, like most exciting natural images that are on par with a selection of highly activating natural images, or image reconstructions that generalize better across architectures. Finally, EGG is simple to implement, requires no retraining of the diffusion model, and can easily be generalized to provide other characterizations of the visual system, such as invariances. Thus EGG provides a general and flexible framework to study coding properties of the visual system in the context of natural images.

SELECTION OF CITATIONS
SEARCH DETAIL