Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Mol Cell ; 83(23): 4370-4385.e9, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38016475

ABSTRACT

Targeting epigenetic regulators to potentiate anti-PD-1 immunotherapy converges on the activation of type I interferon (IFN-I) response, mimicking cellular response to viral infection, but how its strength and duration are regulated to impact combination therapy efficacy remains largely unknown. Here, we show that mitochondrial CPT1A downregulation following viral infection restrains, while its induction by epigenetic perturbations sustains, a double-stranded RNA-activated IFN-I response. Mechanistically, CPT1A recruits the endoplasmic reticulum-localized ZDHHC4 to catalyze MAVS Cys79-palmitoylation, which promotes MAVS stabilization and activation by inhibiting K48- but facilitating K63-linked ubiquitination. Further elevation of CPT1A incrementally increases MAVS palmitoylation and amplifies the IFN-I response, which enhances control of viral infection and epigenetic perturbation-induced antitumor immunity. Moreover, CPT1A chemical inducers augment the therapeutic effect of combined epigenetic treatment with PD-1 blockade in refractory tumors. Our study identifies CPT1A as a stabilizer of MAVS activation, and its link to epigenetic perturbation can be exploited for cancer immunotherapy.


Subject(s)
Interferon Type I , Virus Diseases , Humans , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Lipoylation , Epigenesis, Genetic , Immunity, Innate
2.
Mol Cell ; 83(19): 3485-3501.e11, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37802024

ABSTRACT

p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.


Subject(s)
Autophagosomes , Ubiquitinated Proteins , Mice , Rats , Humans , Animals , Autophagosomes/metabolism , Ubiquitinated Proteins/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Autophagy/genetics , Acylation , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mammals/metabolism
3.
Cell ; 145(7): 1075-87, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21683433

ABSTRACT

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Subject(s)
Amino Acids/pharmacology , Biphenyl Compounds/pharmacology , Ubiquitin-Protein Ligase Complexes/antagonists & inhibitors , Allosteric Site , Amino Acid Sequence , Anaphase-Promoting Complex-Cyclosome , DNA Mutational Analysis , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligase Complexes/chemistry , Ubiquitin-Protein Ligase Complexes/genetics
4.
EMBO J ; 40(13): e108812, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34132411

ABSTRACT

The cytosolic NOD1 and NOD2 pattern recognition receptors are typically known as sensors of bacterial peptidoglycan fragments. A new study in this issue links NOD1/2 activation with ER homeostasis through the bioactive metabolite sphingosine-1-phosphate (S1P).


Subject(s)
Nod1 Signaling Adaptor Protein , Nod2 Signaling Adaptor Protein , Lysophospholipids , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Receptors, Pattern Recognition/metabolism , Signal Transduction , Sphingosine/analogs & derivatives
5.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479648

ABSTRACT

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Subject(s)
Apolipoprotein A-I , Lipoproteins, HDL , Lipoproteins, LDL , Transcytosis , Animals , Humans , Male , Mice , Apolipoprotein A-I/metabolism , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Protein Binding , Scavenger Receptors, Class B/metabolism
6.
EMBO J ; 39(5): e102608, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31930741

ABSTRACT

Degradation of endoplasmic reticulum (ER) by selective autophagy (ER-phagy) is crucial for ER homeostasis. However, it remains unclear how ER scission is regulated for subsequent autophagosomal sequestration and lysosomal degradation. Here, we show that oligomerization of ER-phagy receptor FAM134B (also referred to as reticulophagy regulator 1 or RETREG1) through its reticulon-homology domain is required for membrane fragmentation in vitro and ER-phagy in vivo. Under ER-stress conditions, activated CAMK2B phosphorylates the reticulon-homology domain of FAM134B, which enhances FAM134B oligomerization and activity in membrane fragmentation to accommodate high demand for ER-phagy. Unexpectedly, FAM134B G216R, a variant derived from a type II hereditary sensory and autonomic neuropathy (HSAN) patient, exhibits gain-of-function defects, such as hyperactive self-association and membrane scission, which results in excessive ER-phagy and sensory neuron death. Therefore, this study reveals a mechanism of ER membrane fragmentation in ER-phagy, along with a signaling pathway in regulating ER turnover, and suggests a potential implication of excessive selective autophagy in human diseases.


Subject(s)
Autophagy , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Endoplasmic Reticulum Stress , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Signal Transduction , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Membrane/metabolism , Cytokinesis/physiology , Endoplasmic Reticulum/metabolism , Gain of Function Mutation , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lysosomes/metabolism , Membrane Proteins/genetics , Polymerization
7.
J Hepatol ; 78(4): 704-716, 2023 04.
Article in English | MEDLINE | ID: mdl-36574921

ABSTRACT

BACKGROUND & AIMS: Appropriate treatment options are lacking for hepatitis E virus (HEV)-infected pregnant women and immunocompromised individuals. Thus, we aimed to identify efficient anti-HEV drugs through high-throughput screening, validate them in vitro and in vivo (in a preclinical animal study), and elucidate their underlying antiviral mechanism of action. METHODS: Using appropriate cellular and rodent HEV infection models, we studied a critical pathway for host-HEV interactions and performed a preclinical study of the corresponding antivirals, which target proteostasis of the HEV replicase. RESULTS: We found 17 inhibitors that target HEV-HSP90 interactions by unbiased compound library screening on human hepatocytes harboring an HEV replicon. Inhibitors of HSP90 (iHSP90) markedly suppressed HEV replication with efficacy exceeding that of conventional antivirals (IFNα and ribavirin) in vitro. Mechanistically, iHSP90 treatment released the viral replicase ORF1 protein from the ORF1-HSP90 complex and triggered rapid ubiquitin/proteasome-mediated degradation of ORF1, resulting in abrogated HEV replication. Furthermore, a preclinical trial in a Mongolian gerbil HEV infection model showed this novel anti-HEV strategy to be safe, efficient, and able to prevent HEV-induced liver damage. CONCLUSIONS: In this study, we uncover a proteostatic pathway that is critical for host-HEV interactions and we provide a foundation from which to translate this new understanding of the HEV life cycle into clinically promising antivirals. IMPACT AND IMPLICATIONS: Appropriate treatment options for hepatitis E virus (HEV)-infected pregnant women and immunocompromised patients are lacking; hence, there is an urgent need for safe and effective HEV-specific therapies. This study identified new antivirals (inhibitors of HSP90) that significantly limit HEV infection by targeting the viral replicase for degradation. Moreover, these anti-HEV drugs were validated in an HEV rodent model and were found to be safe and efficient for prevention of HEV-induced liver injury in preclinical experiments. Our findings substantially promote the understanding of HEV pathobiology and pave the way for antiviral development.


Subject(s)
Hepatitis E virus , Hepatitis E , Animals , Humans , Female , Pregnancy , Proteostasis , Viral Replicase Complex Proteins , Hepatitis E/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Viral Proteins , Virus Replication
8.
Hum Genomics ; 14(1): 45, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33287903

ABSTRACT

BACKGROUND: Germline variants of ten keratin genes (K1, K2, K5, K6A, K6B, K9, K10, K14, K16, and K17) have been reported for causing different types of genodermatoses with an autosomal dominant mode of inheritance. Among all the variants of these ten keratin genes, most of them are missense variants. Unlike pathogenic and likely pathogenic variants, understanding the clinical importance of novel missense variants or variants of uncertain significance (VUS) is the biggest challenge for clinicians or medical geneticists. Functional characterization is the only way to understand the clinical association of novel missense variants or VUS but it is time consuming, costly, and depends on the availability of patient's samples. Existing databases report the pathogenic variants of the keratin genes, but never emphasize the systematic effects of these variants on keratin protein structure and genotype-phenotype correlation. RESULTS: To address this need, we developed a comprehensive database KVarPredDB, which contains information of all ten keratin genes associated with genodermatoses. We integrated and curated 400 reported pathogenic missense variants as well as 4629 missense VUS. KVarPredDB predicts the pathogenicity of novel missense variants as well as to understand the severity of disease phenotype, based on four criteria; firstly, the difference in physico-chemical properties between the wild type and substituted amino acids; secondly, the loss of inter/intra-chain interactions; thirdly, evolutionary conservation of the wild type amino acids and lastly, the effect of the substituted amino acids in the heptad repeat. Molecular docking simulations based on resolved crystal structures were adopted to predict stability changes and get the binding energy to compare the wild type protein with the mutated one. We use this basic information to determine the structural and functional impact of novel missense variants on the keratin coiled-coil heterodimer. KVarPredDB was built under the integrative web application development framework SSM (SpringBoot, Spring MVC, MyBatis) and implemented in Java, Bootstrap, React-mutation-mapper, MySQL, Tomcat. The website can be accessed through http://bioinfo.zju.edu.cn/KVarPredDB . The genomic variants and analysis results are freely available under the Creative Commons license. CONCLUSIONS: KVarPredDB provides an intuitive and user-friendly interface with computational analytical investigation for each missense variant of the keratin genes associated with genodermatoses.


Subject(s)
Computational Biology/methods , Databases, Genetic , Genetic Predisposition to Disease/genetics , Keratins/genetics , Mutation, Missense , Skin Diseases, Genetic/genetics , Humans , Phenotype , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , Reproducibility of Results
9.
Biochem J ; 477(17): 3387-3399, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32830849

ABSTRACT

The pseudokinase (PK) RNase L is a functional ribonuclease and plays important roles in human innate immunity. The ribonuclease activity of RNase L can be regulated by the kinase inhibitor sunitinib. The combined use of oncolytic virus and sunitinib has been shown to exert synergistic effects in anticancer therapy. In this study, we aimed to uncover the mechanism of action through which sunitinib inhibits RNase L. We solved the crystal structures of RNase L in complex with sunitinib and its analogs toceranib and SU11652. Our results showed that sunitinib bound to the ATP-binding pocket of RNase L. Unexpectedly, the αA helix linking the ankyrin repeat-domain and the PK domain affected the binding mode of sunitinib and resulted in an unusual flipped orientation relative to other structures in PDB. Molecular dynamics simulations and dynamic light scattering results support that the binding of sunitinib in the PK domain destabilized the dimer conformation of RNase L and allosterically inhibited its ribonuclease activity. Our study suggested that dimer destabilization could be an effective strategy for the discovery of RNase L inhibitors and that targeting the ATP-binding pocket in the PK domain of RNase L was an efficient approach for modulating its ribonuclease activity.


Subject(s)
Endoribonucleases , Protein Multimerization , Sunitinib/chemistry , Crystallography, X-Ray , Endoribonucleases/antagonists & inhibitors , Endoribonucleases/chemistry , Humans , Protein Conformation, alpha-Helical , Protein Domains
10.
J Infect Dis ; 219(1): 133-144, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29688440

ABSTRACT

The bacterial pathogen Neisseria gonorrhoeae is able to transmigrate across the mucosal epithelia following the intracellular route and cause disseminated infections. It is currently unknown whether the autophagy pathway is able target intracellular N. gonorrhoeae for destruction in autolysosomes or whether this bacterium is able to escape autophagy-mediated killing. In this study, we demonstrate that during the early stage of epithelial cell invasion, N. gonorrhoeae is targeted by the autophagy pathway and sequestered into double-membrane autophagosomes that subsequently fuse with lysosomes for destruction. However, a subpopulation of the intracellular gonococci is able to escape early autophagy-mediated killing. N. gonorrhoeae is subsequently able to inhibit this pathway, allowing intracellular survival and exocytosis. During this stage, N. gonorrhoeae activates the autophagy repressor mammalian target of rapamycin complex 1 and inhibits autophagosome maturation and lysosome fusion. Thus, our results provide novel insight into the interactions between N. gonorrhoeae and the autophagy pathway during invasion and transcytosis of epithelial cells.


Subject(s)
Autophagosomes/metabolism , Autophagy/physiology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Neisseria gonorrhoeae/metabolism , Autophagosomes/microbiology , Autophagosomes/ultrastructure , Autophagy/immunology , Epithelial Cells/cytology , Gentamicins/pharmacology , Gonorrhea/metabolism , HeLa Cells , Host-Pathogen Interactions/physiology , Humans , Lysosomes/metabolism , Microbial Viability , Neisseria gonorrhoeae/immunology
11.
J Infect Dis ; 219(6): 945-954, 2019 02 23.
Article in English | MEDLINE | ID: mdl-30335152

ABSTRACT

BACKGROUND: The interaction of Plasmodium falciparum-infected erythrocytes (IEs) with the host receptor CD36 is among the most studied host-parasite interfaces. CD36 is a scavenger receptor that binds numerous ligands including the cysteine-rich interdomain region (CIDR)α domains of the erythrocyte membrane protein 1 family (PfEMP1) expressed on the surface of IEs. CD36 is conserved across species, but orthologs display differential binding of IEs. METHODS: In this study, we exploited these differences, combined with the recent crystal structure and 3-dimensional modeling of CD36, to investigate malaria-CD36 structure-function relationships and further define IE-CD36 binding interactions. RESULTS: We show that a charged surface in the membrane-distal region of CD36 is necessary for IE binding. Moreover, IE interaction with this binding surface is influenced by additional CD36 domains, both proximal to and at a distance from this site. CONCLUSIONS: Our data indicate that subtle sequence and spatial differences in these domains modify receptor conformation and regulate the ability of CD36 to selectively interact with its diverse ligands.


Subject(s)
CD36 Antigens/metabolism , Erythrocytes/parasitology , Plasmodium falciparum/immunology , Animals , Antigens, Protozoan/metabolism , Binding Sites , CD36 Antigens/chemistry , CD36 Antigens/genetics , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetulus , Erythrocytes/physiology , Host-Parasite Interactions/genetics , Humans , Malaria, Falciparum/immunology , Mutagenesis , Plasmodium falciparum/physiology , Structure-Activity Relationship
12.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L740-L750, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30702342

ABSTRACT

In healthy blood vessels, albumin crosses the endothelium to leave the circulation by transcytosis. However, little is known about the regulation of albumin transcytosis or how it differs in different tissues; its physiological purpose is also unclear. Using total internal reflection fluorescence microscopy, we quantified transcytosis of albumin across primary human microvascular endothelial cells from both lung and skin. We then validated our in vitro findings using a tissue-specific knockout mouse model. We observed that albumin transcytosis was saturable in the skin but not the lung microvascular endothelial cells, implicating a receptor-mediated process. We identified the scavenger receptor CD36 as being both necessary and sufficient for albumin transcytosis across dermal microvascular endothelium, in contrast to the lung where macropinocytosis dominated. Mutations in the apical helical bundle of CD36 prevented albumin internalization by cells. Mice deficient in CD36 specifically in endothelial cells exhibited lower basal permeability to albumin and less basal tissue edema in the skin but not in the lung. Finally, these mice also exhibited a smaller subcutaneous fat layer despite having identical total body weights and circulating fatty acid levels as wild-type animals. In conclusion, CD36 mediates albumin transcytosis in the skin but not the lung. Albumin transcytosis may serve to regulate fatty acid delivery from the circulation to tissues.


Subject(s)
Albumins/metabolism , CD36 Antigens/metabolism , Endothelial Cells/metabolism , Fatty Acids/metabolism , Animals , CD36 Antigens/chemistry , CD36 Antigens/deficiency , CD36 Antigens/genetics , Cells, Cultured , Endothelial Cells/cytology , Humans , Lung/blood supply , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microvessels/cytology , Microvessels/metabolism , Mutagenesis, Site-Directed , Pinocytosis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Skin/blood supply , Subcutaneous Fat/anatomy & histology , Subcutaneous Fat/metabolism , Tissue Distribution , Transcytosis
13.
Nature ; 504(7478): 172-6, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24162852

ABSTRACT

Members of the CD36 superfamily of scavenger receptor proteins are important regulators of lipid metabolism and innate immunity. They recognize normal and modified lipoproteins, as well as pathogen-associated molecular patterns. The family consists of three members: SR-BI (which delivers cholesterol to the liver and steroidogenic organs and is a co-receptor for hepatitis C virus), LIMP-2/LGP85 (which mediates lysosomal delivery of ß-glucocerebrosidase and serves as a receptor for enterovirus 71 and coxsackieviruses) and CD36 (a fatty-acid transporter and receptor for phagocytosis of effete cells and Plasmodium-infected erythrocytes). Notably, CD36 is also a receptor for modified lipoproteins and ß-amyloid, and has been implicated in the pathogenesis of atherosclerosis and of Alzheimer's disease. Despite their prominent roles in health and disease, understanding the function and abnormalities of the CD36 family members has been hampered by the paucity of information about their structure. Here we determine the crystal structure of LIMP-2 and infer, by homology modelling, the structure of SR-BI and CD36. LIMP-2 shows a helical bundle where ß-glucocerebrosidase binds, and where ligands are most likely to bind to SR-BI and CD36. Remarkably, the crystal structure also shows the existence of a large cavity that traverses the entire length of the molecule. Mutagenesis of SR-BI indicates that the cavity serves as a tunnel through which cholesterol(esters) are delivered from the bound lipoprotein to the outer leaflet of the plasma membrane. We provide evidence supporting a model whereby lipidic constituents of the ligands attached to the receptor surface are handed off to the membrane through the tunnel, accounting for the selective lipid transfer characteristic of SR-BI and CD36.


Subject(s)
CD36 Antigens/metabolism , Lysosomal Membrane Proteins/chemistry , Models, Molecular , Animals , CHO Cells , Cricetulus , HeLa Cells , Humans , Lysosomal Membrane Proteins/metabolism , Protein Binding , Protein Structure, Tertiary
14.
J Biol Chem ; 291(16): 8414-27, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26907692

ABSTRACT

The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.


Subject(s)
Adaptor Protein Complex 3/metabolism , CD36 Antigens/metabolism , Hermanski-Pudlak Syndrome/metabolism , Lysosomal Membrane Proteins/metabolism , Peroxiredoxin VI/metabolism , Phosphatidylcholines/metabolism , Pulmonary Alveoli/metabolism , Adaptor Protein Complex 3/genetics , Animals , CD36 Antigens/genetics , Female , Hermanski-Pudlak Syndrome/genetics , Hermanski-Pudlak Syndrome/pathology , Lysosomal Membrane Proteins/genetics , Male , Mice , Peroxiredoxin VI/genetics , Phosphatidylcholines/genetics , Pulmonary Alveoli/pathology
15.
Nucleic Acids Res ; 43(21): 10277-91, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26350214

ABSTRACT

Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.


Subject(s)
DNA Repair , DNA Replication , DNA-Binding Proteins/chemistry , Transcription Factors/chemistry , Adenosine Triphosphatases/metabolism , Cell Line , DNA/metabolism , DNA-Binding Proteins/metabolism , Humans , Proliferating Cell Nuclear Antigen/metabolism , Protein Structure, Tertiary , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
16.
J Biomol NMR ; 66(3): 209-219, 2016 11.
Article in English | MEDLINE | ID: mdl-27771863

ABSTRACT

HLTF is a SWI2/SNF2-family ATP-dependent chromatin remodeling enzyme that acts in the error-free branch of DNA damage tolerance (DDT), a cellular mechanism that enables replication of damaged DNA while leaving damage repair for a later time. Human HLTF and a closely related protein SHPRH, as well as their yeast homologue Rad5, are multi-functional enzymes that share E3 ubiquitin-ligase activity required for activation of the error-free DDT. HLTF and Rad5 also function as ATP-dependent dsDNA translocases and possess replication fork reversal activities. Thus, they can convert Y-shaped replication forks into X-shaped Holliday junction structures that allow error-free replication over DNA lesions. The fork reversal activity of HLTF is dependent on 3'-ssDNA-end binding activity of its N-terminal HIRAN domain. Here we present the solution NMR structure of the human HLTF HIRAN domain, an OB-like fold module found in organisms from bacteria (as a stand-alone domain) to plants, fungi and metazoan (in combination with SWI2/SNF2 helicase-like domain). The obtained structure of free HLTF HIRAN is similar to recently reported structures of its DNA bound form, while the NMR analysis also reveals that the DNA binding site of the free domain exhibits conformational heterogeneity. Sequence comparison of N-terminal regions of HLTF, SHPRH and Rad5 aided by knowledge of the HLTF HIRAN structure suggests that the SHPRH N-terminus also includes an uncharacterized structured module, exhibiting weak sequence similarity with HIRAN regions of HLTF and Rad5, and potentially playing a similar functional role.


Subject(s)
DNA-Binding Proteins/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Amino Acid Sequence , Conserved Sequence , DNA Damage , DNA-Binding Proteins/genetics , Evolution, Molecular , Humans , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Interaction Domains and Motifs/genetics , Solutions , Transcription Factors/genetics
17.
Mol Cell ; 32(2): 259-75, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-18951093

ABSTRACT

Kae1 is a universally conserved ATPase and part of the essential gene set in bacteria. In archaea and eukaryotes, Kae1 is embedded within the protein kinase-containing KEOPS complex. Mutation of KEOPS subunits in yeast leads to striking telomere and transcription defects, but the exact biochemical function of KEOPS is not known. As a first step to elucidating its function, we solved the atomic structure of archaea-derived KEOPS complexes involving Kae1, Bud32, Pcc1, and Cgi121 subunits. Our studies suggest that Kae1 is regulated at two levels by the primordial protein kinase Bud32, which is itself regulated by Cgi121. Moreover, Pcc1 appears to function as a dimerization module, perhaps suggesting that KEOPS may be a processive molecular machine. Lastly, as Bud32 lacks the conventional substrate-recognition infrastructure of eukaryotic protein kinases including an activation segment, Bud32 may provide a glimpse of the evolutionary history of the protein kinase family.


Subject(s)
Archaeal Proteins/chemistry , Multiprotein Complexes/chemistry , Protein Kinases/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Carrier Proteins/chemistry , Crystallography, X-Ray , Escherichia coli/genetics , Humans , Intracellular Signaling Peptides and Proteins , Methanococcus/genetics , Methanococcus/metabolism , Models, Molecular , Multiprotein Complexes/physiology , Nuclear Magnetic Resonance, Biomolecular , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Structure, Tertiary , Protein Subunits/chemistry , Sequence Homology, Amino Acid , Telomere/metabolism , Thermoplasma/genetics , Thermoplasma/metabolism , Transcription, Genetic
18.
Nucleic Acids Res ; 41(12): 6332-46, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23620299

ABSTRACT

The universally conserved Kae1/Qri7/YgjD and Sua5/YrdC protein families have been implicated in growth, telomere homeostasis, transcription and the N6-threonylcarbamoylation (t(6)A) of tRNA, an essential modification required for translational fidelity by the ribosome. In bacteria, YgjD orthologues operate in concert with the bacterial-specific proteins YeaZ and YjeE, whereas in archaeal and eukaryotic systems, Kae1 operates as part of a larger macromolecular assembly called KEOPS with Bud32, Cgi121, Gon7 and Pcc1 subunits. Qri7 orthologues function in the mitochondria and may represent the most primitive member of the Kae1/Qri7/YgjD protein family. In accordance with previous findings, we confirm that Qri7 complements Kae1 function and uncover that Qri7 complements the function of all KEOPS subunits in growth, t(6)A biosynthesis and, to a partial degree, telomere maintenance. These observations suggest that Kae1 provides a core essential function that other subunits within KEOPS have evolved to support. Consistent with this inference, Qri7 alone is sufficient for t(6)A biosynthesis with Sua5 in vitro. In addition, the 2.9 Å crystal structure of Qri7 reveals a simple homodimer arrangement that is supplanted by the heterodimerization of YgjD with YeaZ in bacteria and heterodimerization of Kae1 with Pcc1 in KEOPS. The partial complementation of telomere maintenance by Qri7 hints that KEOPS has evolved novel functions in higher organisms.


Subject(s)
Adenosine/analogs & derivatives , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Adenosine/biosynthesis , Adenosine/metabolism , Dimerization , Metalloendopeptidases/physiology , Mitochondrial Proteins/physiology , Models, Molecular , Protein Subunits/physiology , RNA, Transfer/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/physiology , Telomere Homeostasis
19.
Mol Cell Proteomics ; 11(8): 329-41, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22496338

ABSTRACT

Here we describe a systematic structure-function analysis of the human ubiquitin (Ub) E2 conjugating proteins, consisting of the determination of 15 new high-resolution three-dimensional structures of E2 catalytic domains, and autoubiquitylation assays for 26 Ub-loading E2s screened against a panel of nine different HECT (homologous to E6-AP carboxyl terminus) E3 ligase domains. Integration of our structural and biochemical data revealed several E2 surface properties associated with Ub chain building activity; (1) net positive or neutral E2 charge, (2) an "acidic trough" located near the catalytic Cys, surrounded by an extensive basic region, and (3) similarity to the previously described HECT binding signature in UBE2L3 (UbcH7). Mass spectrometry was used to characterize the autoubiquitylation products of a number of functional E2-HECT pairs, and demonstrated that HECT domains from different subfamilies catalyze the formation of very different types of Ub chains, largely independent of the E2 in the reaction. Our data set represents the first comprehensive analysis of E2-HECT E3 interactions, and thus provides a framework for better understanding the molecular mechanisms of ubiquitylation.


Subject(s)
Protein Structure, Tertiary , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Blotting, Western , Catalytic Domain , Evolution, Molecular , Humans , Mass Spectrometry , Models, Molecular , Phylogeny , Protein Binding , Sequence Homology, Amino Acid , Static Electricity , Surface Properties , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/classification , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
20.
Nat Commun ; 15(1): 2553, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519472

ABSTRACT

Lysosomal Storage Disorders (LSDs), which share common phenotypes, including enlarged lysosomes and defective lysosomal storage, are caused by mutations in lysosome-related genes. Although gene therapies and enzyme replacement therapies have been explored, there are currently no effective routine therapies against LSDs. During lysosome reformation, which occurs when the functional lysosome pool is reduced, lysosomal lipids and proteins are recycled to restore lysosome functions. Here we report that the sorting nexin protein SNX8 promotes lysosome tubulation, a process that is required for lysosome reformation, and that loss of SNX8 leads to phenotypes characteristic of LSDs in human cells. SNX8 overexpression rescued features of LSDs in cells, and AAV-based delivery of SNX8 to the brain rescued LSD phenotypes in mice. Importantly, by screening a natural compound library, we identified three small molecules that enhanced SNX8-lysosome binding and reversed LSD phenotypes in human cells and in mice. Altogether, our results provide a potential solution for the treatment of LSDs.


Subject(s)
Lysosomal Storage Diseases , Mice , Animals , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/therapy , Lysosomal Storage Diseases/metabolism , Proteins/metabolism , Brain/metabolism , Mutation , Lysosomes/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL