Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745619

ABSTRACT

It never rains in standard lab-confinements; thus we have limited understanding of animal reactions to water and wetness. To address this issue, we sprayed water on different body parts of rats and measured drying and fur temperature by thermal imaging while manipulating behavior, sensory cues and fur. Spraying water on rats resulted in fur changes (hair clumping, apex formation), grooming, shaking, and scratching. Anesthesia abolished behavioral responses, interfered with fur changes, and slowed drying. Spraying water on different body parts resulted in differential behavioral drying responses. Spraying the head resulted in grooming and shaking responses; water evaporated twice as fast as water sprayed on the animal's back or belly. We observed no effect of whisker removal on post-water-spraying behavior. In contrast, local anesthesia of dorsal facial skin reduced post-water-spraying behavioral responses. Shaving of head fur drastically enhanced post-water-spraying behaviors, but reduced water loss during drying; indicating that fur promotes evaporation, acting in tandem with behavior to mediate drying. Excised wet fur patches dried and cooled faster than shaved excised wet skin. Water was sucked into distal hair tips, where it evaporated. We propose the wet-fur-heat-pump-hypothesis; fur might extract heat required for drying by cooling ambient air.

2.
Front Behav Neurosci ; 16: 968159, 2022.
Article in English | MEDLINE | ID: mdl-36212189

ABSTRACT

Angelman syndrome (AS) is a single-gene neurodevelopmental disorder associated with cognitive and motor impairment, seizures, lack of speech, and disrupted sleep. AS is caused by loss-of-function mutations in the UBE3A gene, and approaches to reinstate functional UBE3A are currently in clinical trials in children. Behavioral testing in a mouse model of AS (Ube3a m-/p+ ) represents an important tool to assess the effectiveness of current and future treatments preclinically. Existing behavioral tests effectively model motor impairments, but not cognitive impairments, in Ube3a m-/p+ mice. Here we tested the hypothesis that the 5-choice serial reaction time task (5CSRTT) can be used to assess cognitive behaviors in Ube3a m-/p+ mice. Ube3a m-/p+ mice had more omissions during 5CSRTT training than wild-type littermate controls, but also showed impaired motor function including open field hypoactivity and delays in eating pellet rewards. Motor impairments thus presented an important confound for interpreting this group difference in omissions. We report that despite hypoactivity during habituation, Ube3a m-/p+ mice had normal response latencies to retrieve rewards during 5CSRTT training. We also accounted for delays in eating pellet rewards by assessing omissions solely on trials where eating delays would not impact results. Thus, the increase in omissions in Ube3a m-/p+ mice is likely not caused by concurrent motor impairments. This work underscores the importance of considering how known motor impairments in Ube3a m-/p+ mice may affect behavioral performance in other domains. Our results also provide guidance on how to design a 5CSRTT protocol that is best suited for future studies in Ube3a mutants.

SELECTION OF CITATIONS
SEARCH DETAIL