Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39337388

ABSTRACT

Previously, we described the mechanisms of development of autoimmune encephalomyelitis (EAE) in 3-month-old C57BL/6, Th, and 2D2 mice. The faster and more profound spontaneous development of EAE with the achievement of deeper pathology occurs in hybrid 2D2/Th mice. Here, the cellular and immunological analysis of EAE development in 2D2/Th mice was carried out. In Th, 2D2, and 2D2/Th mice, the development of EAE is associated with a change in the differentiation profile of hemopoietic bone marrow stem cells, which, in 2D2/Th, differs significantly from 2D2 and Th mice. Hybrid 2D2/Th mice demonstrate a significant difference in these changes in all strains of mice, leading to the production of antibodies with catalytic activities, known as abzymes, against self-antigens: myelin oligodendrocyte glycoprotein (MOG), DNA, myelin basic protein (MBP), and five histones (H1-H4) hydrolyze these antigens. There is also the proliferation of B and T lymphocytes in different organs (blood, bone marrow, thymus, spleen, lymph nodes). The patterns of changes in the concentration of antibodies and the relative activity of abzymes during the spontaneous development of EAE in the hydrolysis of these immunogens are significantly or radically different for the three lines of mice: Th, 2D2, and 2D2/Th. Several factors may play an essential role in the acceleration of EAE in 2D2/Th mice. The treatment of mice with MOG accelerates the development of EAE pathology. In the initial period of EAE development, the concentration of anti-MOG antibodies in 2D2/Th is significantly higher than in Th (29.1-fold) and 2D2 (11.7-fold). As shown earlier, antibodies with DNase activity penetrate cellular and nuclear membranes and activate cell apoptosis, stimulating autoimmune processes. In the initial period of EAE development, the concentration of anti-DNA antibodies in 2D2/Th hybrids is higher than in Th (4.6-fold) and 2D2 (25.7-fold); only 2D2/Th mice exhibited a very strong 10.6-fold increase in the DNase activity of IgGs during the development of EAE. Free histones in the blood are cytotoxic and stimulate the development of autoimmune diseases. Only in 2D2/Th mice, during different periods of EAE development, was a sharp increase in the anti-antibody activity in the hydrolysis of some histones observed.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice , Myelin-Oligodendrocyte Glycoprotein/immunology , Histones/metabolism , Histones/immunology , Antibodies, Catalytic/metabolism , Antibodies, Catalytic/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Myelin Basic Protein/immunology , Female , Autoantigens/immunology , Cell Differentiation
2.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543019

ABSTRACT

The exact mechanisms of MS (multiple sclerosis) evolution are still unknown. However, the development of EAE (experimental autoimmune encephalomyelitis simulating human MS) in C57BL/6 mice occurs due to the violation of bone marrow hematopoietic stem cell differentiation profiles, leading to the production of toxic for human autoantibody splitting MBP (myelin basic protein), MOG (mouse oligodendrocyte glycoprotein), five histones, DNA, and RNA. Here, we first analyzed the changes in the relative phosphatase activity of IgGs from C57BL/6 mice blood over time, corresponding to three stages of EAE: onset, acute, and remission. Antibodies have been shown to catalyze the hydrolysis of p-nitrophenyl phosphate at several optimal pH values, mainly in the range of 6.5-7.0 and 8.5-9.5. During the spontaneous development of EAE, the most optimal value is pH 6.5. At 50 days after the birth of mice, the phosphatase activity of IgGs at pH 8.8 is 1.6-fold higher than at pH 6.5. During spontaneous development of EAE from 50 to 100 days, an increase in phosphatase activity is observed at pH 6.5 but a decrease at pH 8.8. After mice were immunized with DNA-histone complex by 20 and 60 days, phosphatase activity increased respectively by 65.3 and 109.5 fold (pH 6.5) and 128.4 and 233.6 fold (pH 8.8). Treatment of mice with MOG at the acute phase of EAE development (20 days) leads to a maximal increase in the phosphatase activity of 117.6 fold (pH 6.5) and 494.7 fold (pH 8.8). The acceleration of EAE development after mice treatment with MOG and DNA-histone complex results in increased production of lymphocytes synthesizing antibodies with phosphatase activity. All data show that IgG phosphatase activity could be essential in EAE pathogenesis.


Subject(s)
Antibodies, Catalytic , Encephalomyelitis, Autoimmune, Experimental , Mice , Humans , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Autoantibodies , Myelin-Oligodendrocyte Glycoprotein , Histones , Mice, Inbred C57BL , DNA , Phosphoric Monoester Hydrolases
3.
Curr Issues Mol Biol ; 45(12): 9887-9903, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38132463

ABSTRACT

Anti-DNA antibodies are known to be classical serological hallmarks of systemic lupus erythematosus (SLE). In addition to high-affinity antibodies, the autoantibody pool also contains natural catalytic anti-DNA antibodies that recognize and hydrolyze DNA. However, the specificity of such antibodies is uncertain. In addition, DNA binding to a surface such as the cell membrane, can also affect its recognition by antibodies. Here, we analyzed the hydrolysis of short oligodeoxyribonucleotides (ODNs) immobilized on the microarray surface and in solution by catalytic anti-DNA antibodies from SLE patients. It has been shown that IgG antibodies from SLE patients hydrolyze ODNs more effectively both in solution and on the surface, compared to IgG from healthy individuals. The data obtained indicate a more efficient hydrolysis of ODNs in solution than immobilized ODNs on the surface. In addition, differences in the specificity of recognition and hydrolysis of certain ODNs by anti-DNA antibodies were revealed, indicating the formation of autoantibodies to specific DNA motifs in SLE. The data obtained expand our understanding of the role of anti-DNA antibodies in SLE. Differences in the recognition and hydrolysis of surface-tethered and dissolved ODNs need to be considered in DNA microarray applications.

4.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762643

ABSTRACT

Antibodies recognizing RBD and the S-protein have been previously demonstrated to be formed in humans after SARS-CoV-2 infection and vaccination with the Sputnik V adenovirus vaccine. These antibodies were found to be active when hydrolyzing FITC-labeled oligopeptides corresponding to linear epitopes of the S-protein. The thin-layer chromatography method allows the relative accumulation of the reaction product to be estimated but cannot identify hydrolysis sites. This study used the MALDI-TOF MS method to establish oligopeptide hydrolysis sites. Using the MALDI-TOF MS method in combination with the analysis of known hydrolysis sites characteristic of canonical proteases allowed us to establish the unique hydrolysis sites inherent only to catalytically active antibodies. We have discovered two 12-mer oligopeptides to have six hydrolysis sites equally distributed throughout the oligopeptide. The other three oligopeptides were found to have two to three closely spaced hydrolysis sites. In contrast to trypsin and chymotrypsin proteases, the catalytically active antibodies of COVID-19 patients have their peptide bond hydrolyzed mainly after proline, threonine, glycine, or serine residues. Here, we propose a new high-throughput experimental method for analyzing the proteolytic activity of natural antibodies produced in viral pathology.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Hydrolysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Antibodies , Oligopeptides , Peptide Hydrolases , Antibodies, Viral
5.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373342

ABSTRACT

Exosomes are nanovesicles 40-120 nm in diameter secreted by almost all cell types and providing humoral intercellular interactions. Given the natural origin and high biocompatibility, the potential for loading various anticancer molecules and therapeutic nucleic acids inside, and the surface modification possibility for targeted delivery, exosomes are considered to be a promising means of delivery to cell cultures and experimental animal organisms. Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities. Milk exosomes are highly resistant to the harsh conditions of the gastrointestinal tract. In vitro studies have demonstrated that milk exosomes have an affinity to epithelial cells, are digested by cells by endocytosis mechanism, and can be used for oral delivery. With milk exosome membranes containing hydrophilic and hydrophobic components, exosomes can be loaded with hydrophilic and lipophilic drugs. This review covers a number of scalable protocols for isolating and purifying exosomes from human, cow, and horse milk. Additionally, it considers passive and active methods for drug loading into exosomes, as well as methods for modifying and functionalizing the surface of milk exosomes with specific molecules for more efficient and specific delivery to target cells. In addition, the review considers various approaches to visualize exosomes and determine cellular localization and bio-distribution of loaded drug molecules in tissues. In conclusion, we outline new challenges for studying milk exosomes, a new generation of targeted delivery agents.


Subject(s)
Antineoplastic Agents , Exosomes , Animals , Cattle , Female , Humans , Exosomes/metabolism , Milk/metabolism , Drug Delivery Systems , Drug Carriers/metabolism
6.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901861

ABSTRACT

It was shown that the spontaneous development of experimental encephalomyelitis (EAE) in C57BL/6 mice occurs due to changes in the profile of bone marrow stem cells differentiation. This leads to the appearance of lymphocytes producing antibodies-abzymes that hydrolyze DNA, myelin basic protein (MBP), and histones. The activity of abzymes in the hydrolysis of these auto-antigens slowly but constantly increases during the spontaneous development of EAE. Treatment of mice with myelin oligodendrocyte glycoprotein (MOG) leads to a sharp increase in the activity of these abzymes with their maximum at 20 days (acute phase) after immunization. In this work, we analyzed changes in the activity of IgG-abzymes hydrolyzing (pA)23, (pC)23, (pU)23, and six miRNAs (miR-9-5p, miR-219a-5p, miR-326, miR-155-5p, miR-21-3p, and miR-146a-3p) before and after mice immunization with MOG. Unlike abzymes hydrolyzing DNA, MBP, and histones, the spontaneous development of EAE leads not to an increase but to a permanent decrease of IgGs activity of hydrolysis of RNA-substrates. Treatment of mice with MOG resulted in a sharp but transient increase in the activity of antibodies by day 7 (onset of the disease), followed by a sharp decrease in activity 20-40 days after immunization. A significant difference in the production of abzymes against DNA, MBP, and histones before and after mice immunization with MOG with those against RNAs may be since the expression of many miRNAs decreased with age. This can lead to a decrease in the production of antibodies and abzymes that hydrolyze miRNAs with age mice.


Subject(s)
Antibodies, Catalytic , Encephalomyelitis, Autoimmune, Experimental , MicroRNAs , Mice , Animals , Histones/metabolism , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein , DNA
7.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37239982

ABSTRACT

Histones play vital roles in chromatin function and gene transcription; however, they are very harmful in the intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibodies-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against individual histones (H2A, H1, H2B, H3, and H4) and MBP were isolated from the blood of experimental-autoimmune-encephalomyelitis-prone C57BL/6 mice by several affinity chromatographies. These Abs-abzymes corresponded to various stages of EAE development: spontaneous EAE, MOG, and DNA-histones accelerated the onset, acute, and remission stages. IgGs-abzymes against MBP and five individual histones showed unusual polyreactivity in the complex formation and enzymatic cross-reactivity in the specific hydrolysis of the H2A histone. All the IgGs of 3-month-old mice (zero time) against MBP and individual histones demonstrated from 4 to 35 different H2A hydrolysis sites. The spontaneous development of EAE over 60 days led to a significant change in the type and number of H2A histone hydrolysis sites by IgGs against five histones and MBP. Mice treatment with MOG and the DNA-histone complex changed the type and number of H2A hydrolysis sites compared to zero time. The minimum number (4) of different H2A hydrolysis sites was found for IgGs against H2A (zero time), while the maximum (35) for anti-H2B IgGs (60 days after mice treatment with DNA-histone complex). Overall, it was first demonstrated that at different stages of EAE evolution, IgGs-abzymes against individual histones and MBP could significantly differ in the number and type of specific sites of H2A hydrolysis. The possible reasons for the catalytic cross-reactivity and great differences in the number and type of histone H2A cleavage sites were analyzed.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Histones , Animals , Mice , Histones/metabolism , Hydrolysis , Myelin Basic Protein/metabolism , Mice, Inbred C57BL , DNA/metabolism , Autoantibodies/metabolism
8.
Int J Mol Sci ; 24(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37373231

ABSTRACT

Coronavirus disease (COVID-19), caused by the SARS-CoV-2 coronavirus, leads to various manifestations of the post-COVID syndrome, including diabetes, heart and kidney disease, thrombosis, neurological and autoimmune diseases and, therefore, remains, so far, a significant public health problem. In addition, SARS-CoV-2 infection can lead to the hyperproduction of reactive oxygen species (ROS), causing adverse effects on oxygen transfer efficiency, iron homeostasis, and erythrocytes deformation, contributing to thrombus formation. In this work, the relative catalase activity of the serum IgGs of patients recovered from COVID-19, healthy volunteers vaccinated with Sputnik V, vaccinated with Sputnik V after recovering from COVID-19, and conditionally healthy donors were analyzed for the first time. Previous reports show that along with canonical antioxidant enzymes, the antibodies of mammals with superoxide dismutase, peroxidase, and catalase activities are involved in controlling reactive oxygen species levels. We here show that the IgGs from patients who recovered from COVID-19 had the highest catalase activity, and this was statistically significantly higher each compared to the healthy donors (1.9-fold), healthy volunteers vaccinated with Sputnik V (1.4-fold), and patients vaccinated after recovering from COVID-19 (2.1-fold). These data indicate that COVID-19 infection may stimulate the production of antibodies that degrade hydrogen peroxide, which is harmful at elevated concentrations.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Catalase , Antioxidants , Reactive Oxygen Species , Antibodies , Antibodies, Viral , Mammals
9.
Int J Mol Sci ; 24(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37629088

ABSTRACT

Extracellular vesicles (EVs), carriers of molecular signals, are considered a critical link in maintaining homeostasis in mammals. Currently, there is growing interest in studying the role of EVs, including exosomes (subpopulation of EVs), in animals of other evolutionary levels, including marine invertebrates. We have studied the possibility of obtaining appropriate preparations of EVs from whole-body extract of holothuria Eupentacta fraudatrix using a standard combination of centrifugation and ultracentrifugation. However, the preparations were heavily polluted, which did not allow us to conclude that they contained vesicles. Subsequent purification by FLX gel filtration significantly reduced the pollution but did not increase vesicle concentration to a necessary level. To detect EVs presence in the body of holothurians, we used transmission electron microscopy of ultrathin sections. Late endosomes, producing the exosomes, were found in the cells of the coelom epithelium covering the gonad, digestive tube and respiratory tree, as well as in the parenchyma cells of these organs. The study of purified homogenates of these organs revealed vesicles (30-100 nm) morphologically corresponding to exosomes. Thus, we can say for sure that holothurian cells produce EVs including exosomes, which can be isolated from homogenates of visceral organs.


Subject(s)
Exosomes , Extracellular Vesicles , Holothuria , Sea Cucumbers , Animals , Biological Evolution , Blister , Mammals
10.
Molecules ; 28(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770997

ABSTRACT

The exact mechanisms of the evolution of multiple sclerosis are still unknown. At the same time, the development in C57BL/6 mice of experimental autoimmune encephalomyelitis (EAE, simulating human multiple sclerosis) happens as a result of the violation of bone marrow hematopoietic stem cell differentiation profiles integrated with the production of toxic auto-antibodies splitting the basic myelin protein, myelin oligodendrocyte glycoprotein (MOG), histones, and DNA. It has been shown that IgGs from the plasma of healthy humans and autoimmune patients oxidize many different compounds due to their peroxidase (H2O2-dependent) and oxidoreductase (H2O2-independent) activities. Here, we first analyzed the changes in the relative catalase activity of IgGs from C57BL/6 mice blood plasma over time at different stages of the EAE development (onset, acute, and remission phases). It was shown that the catalase activity of IgGs of 3-month-old mice is, on average, relatively low (kcat = 40.7 min-1), but it increases during 60 days of spontaneous development of EAE 57.4-fold (kcat = 2.3 × 103 min-1). The catalase activity of antibodies increases by a factor of 57.4 by 20 days after the immunization of mice with MOG (kcat = 2.3 × 103 min-1), corresponding to the acute phase of EAE development, and 52.7-fold by 60 days after the treatment of mice with a DNA-histone complex (kcat = 2.1 × 103 min-1). It is the acceleration of the EAE development after the treatment of mice with MOG that leads to the increased production of lymphocytes synthesizing antibodies with catalase activity. All data show that the IgGs' catalase activity can play an essential role in reducing the H2O2 concentration and protecting mice from oxidative stress.


Subject(s)
Antibodies, Catalytic , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Humans , Mice , Autoantibodies , Catalase , DNA , Histones , Hydrogen Peroxide , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein
11.
Molecules ; 28(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049736

ABSTRACT

Histones have vital roles in chromatin functioning and gene transcription. At the same time, they are pernicious in intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibody-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against five individual histones (H2B, H1, H2A, H3, and H4) and MBP were isolated from the blood of experimental autoimmune encephalomyelitis-prone C57BL/6 mice by affinity chromatography. Abzymes corresponding to various stages of EAE development, including spontaneous EAE, myelin oligodendrocyte glycoprotein (MOG)- and DNA-histone complex-accelerated onset, as well as acute and remission stages, were analyzed. IgG-abzymes against MBP and five individual histones showed unusual polyreactivity in complex formation and enzymatic cross-reactivity in the specific hydrolysis of H2B histone. All IgGs against MBP and individual histones in 3-month-old mice (zero time) demonstrated from 4 to 11 different H2B hydrolysis sites. Spontaneous development of EAE during 60 days led to a significant change in the type and number of H2B hydrolysis sites by IgGs against the five histones and MBP. Mouse treatment with MOG and DNA-histone complex changed the type and number of H2B hydrolysis sites compared to zero time. The minimum number (3) of different H2B hydrolysis sites was found for IgGs against H3 20 days after mouse immunization with DNA-histone complex, whereas the maximum number (33) for anti-H2B IgGs was found 60 days after mouse treatment with DNA-histone complex. Overall, this is the first study to demonstrate that at different stages of EAE evolution, IgG-abzymes against five individual histones and MBP could significantly differ in the specific sites and number of H2B hydrolysis sites. Possible reasons for the catalytic cross-reactivity and significant differences in the number and type of histone H2B cleavage sites were analyzed.


Subject(s)
Antibodies, Catalytic , Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , Histones/metabolism , Hydrolysis , Myelin Basic Protein/metabolism , Mice, Inbred C57BL , DNA/metabolism , Myelin-Oligodendrocyte Glycoprotein , Antibodies, Catalytic/metabolism , Immunoglobulin G
12.
J Dairy Sci ; 105(2): 950-964, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34802738

ABSTRACT

Mother's milk provides newborns with various nutrients (e.g., enzymes, proteins, peptides, hormones, antibodies) that help babies grow and protect them from bacterial and viral infections. The functions of many components of breast milk can be very different from their corresponding functions in body fluids of healthy adults. Catalytic antibodies (abzymes) that hydrolyze peptides, proteins, DNA, RNA, and oligosaccharides were detected not only in human milk, but also in the blood sera of autoimmune patients. However, abzymes with unexpected synthetic activities (lipids, oligosaccharides, and protein kinase activities) were revealed in milk that were not found in the blood of autoimmune patients. The nutrition of infants with fresh milk has a very specific role; newborns are well protected by antibodies of mother's milk (passive immunity). Protease abzymes were found in the blood sera of autoimmune patients, whereas healthy humans usually do not contain such autoantibodies. Here, we present the first evidence that the milk of healthy mothers contains secretory (s)IgA that effectively hydrolyze 5 histones (e.g., H1, H2A, H2B, H3, and H4) and myelin basic protein (MBP). Several rigid criteria were applied to show that protease activity is an intrinsic property of sIgA. Milk abzymes against 5 histones cannot hydrolyze different control proteins except histones and MBP, whereas autoantibodies against MBP split this protein and 5 histones. Antibodies against histones and MBP exhibit complexation polyreactivity as well as specific and unusual catalytic cross-reactivity. With some exceptions, the specific sites of hydrolysis of H1, H2A, and H2B by sIgA against histones do not coincide with the sites of hydrolysis by abzymes against MBP. On the whole, fresh human milk is a very specific source of many of the most unusual antibodies and abzymes.


Subject(s)
Histones , Myelin Basic Protein , Animals , Humans , Hydrolysis , Immunoglobulin A, Secretory , Immunoglobulin G/metabolism , Milk, Human/metabolism , Myelin Basic Protein/metabolism
13.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409256

ABSTRACT

During the life of aerobic organisms, the oxygen resulting from numerous reactions is converted into reactive oxygen species (ROS). Many ROS are dangerous due to their high reactivity; they are strong oxidants, and react with various cell components, leading to their damage. To protect against ROS overproduction, enzymatic and non-enzymatic systems are evolved in aerobic cells. Several known non-enzymatic antioxidants have a relatively low specific antioxidant activity. Superoxide dismutases, catalase, glutathione peroxidase, glutathione S-transferase, thioredoxin, and the peroxiredoxin families are the most important enzyme antioxidants. Artificial antibodies catalyzing redox reactions using different approaches have been created. During the past several decades, it has been shown that the blood and various biological fluids of humans and animals contain natural antibodies that catalyze different redox reactions, such as classical enzymes. This review, for the first time, summarizes data on existing non-enzymatic antioxidants, canonical enzymes, and artificial or natural antibodies (abzymes) with redox functions. Comparing abzymes with superoxide dismutase, catalase, peroxide-dependent peroxidase, and H2O2-independent oxidoreductase activities with the same activities as classical enzymes was carried out. The features of abzymes with the redox activities are described, including their exceptional diversity in the optimal pH values, dependency and independence on various metal ions, and the reaction rate constants for healthy donors and patients with different autoimmune diseases. The entire body of evidence indicates that abzymes with redox antioxidant activities existing in the blood for a long time compared to enzymes are an essential part of the protection system of humans and animals from oxidative stress.


Subject(s)
Antioxidants , Hydrogen Peroxide , Animals , Antioxidants/chemistry , Catalase , Glutathione Peroxidase , Humans , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Superoxide Dismutase
14.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292926

ABSTRACT

Human milk provides neonates with various components that ensure newborns' growth, including protection from bacterial and viral infections. In neonates, the biological functions of many breast milk components can be very different compared with their functions in the body fluids of healthy adults. Catalytic antibodies (abzymes) that hydrolyze peptides, proteins, DNAs, RNAs, and oligosaccharides were detected, not only in the blood sera of autoimmune patients, but also in human milk. Non-coding microRNAs (18−25 nucleotides) are intra- and extracellular molecules of different human fluids. MiRNAs possess many different biological functions, including the regulation of several hundred genes. Five of them, miR-148a-3p, miR-200c-3p, miR-378a-3p, miR-146b-5p, and let-7f-5p, were previously found in milk in high concentrations. Here, we determined relative numbers of miRNA copies in 1 mg of analyzed cells, lipid fractions, and plasmas of human milk samples. The relative amount of microRNA decreases in the following order: cells ≈ lipid fraction > plasma. IgGs and sIgAs were isolated from milk plasma, and their activities in the hydrolysis of five microRNAs was compared. In general, sIgAs demonstrated higher miRNA-hydrolyzing activities than IgGs antibodies. The hydrolysis of five microRNAs by sIgAs and IgGs was site-specific. The relative activity of each microRNA hydrolysis was very dependent on the milk preparation. The correlation coefficients between the contents of five RNAs in milk plasma, and the relative activities of sIgAs compared to IgGs in hydrolyses, strongly depended on individual microRNA, and changed from −0.01 to 0.80. Thus, it was shown that milk contains specific antibodies (abzymes) that hydrolyze microRNAs specific for human milk.


Subject(s)
Antibodies, Catalytic , MicroRNAs , Infant, Newborn , Adult , Female , Humans , Antibodies, Catalytic/chemistry , Milk, Human/metabolism , Hydrolysis , MicroRNAs/genetics , MicroRNAs/metabolism , Plasma Cells/metabolism , Immunoglobulin A, Secretory/metabolism , Immunoglobulin G , Oligosaccharides/metabolism , Lipids , Nucleotides/metabolism
15.
Int J Mol Sci ; 23(15)2022 07 22.
Article in English | MEDLINE | ID: mdl-35897678

ABSTRACT

Human milk provides neonates with various components that ensure newborns' growth, including protection from bacterial and viral infections. In neonates, the biological functions of many breast milk components can be very different compared with their functions in the body fluids of healthy adults. Catalytic antibodies-abzymes hydrolyzing peptides, proteins, DNAs, RNAs, and oligosaccharides were detected not only in the blood sera of autoimmune patients but also in human milk. Non-coding microRNAs (18-25 nucleotides) are intra- and extra-cellular molecules of different human fluids. MiRNAs possess many different biological functions, including regulating several hundred genes. Five of them: miR-148a-3p, miR-200c-3p, miR-378a-3p, miR-146b-5p and let-7f-5p were previously found in milk in increased concentrations. Here, we determined number of copies of these miRNAs in 1 mg of analyzed cells, lipid fractions, and plasmas of human milk samples. The relative amount of microRNA decreases in the following order: cells ¼ lipid fraction > plasma. IgGs and sIgAs were isolated from milk plasma, and their activity in the hydrolysis of five microRNAs was compared. In general, sIgAs demonstrated higher miRNA-hydrolyzing activity than IgGs antibodies. The hydrolysis of five microRNAs by sIgAs and IgGs was site-specific. The relative activity of each microRNA hydrolysis was very dependent on the milk preparation. The correlation coefficients between the content of five RNAs in milk plasma and the relative activity of sIgAs than IgGs in their hydrolysis strongly depended on individual microRNA and changed from -0.01 to 0.80. Thus, it was shown that milk contains specific antibodies-abzymes hydrolyzing microRNAs specific for human milk.


Subject(s)
Antibodies, Catalytic , MicroRNAs , Adult , Antibodies, Catalytic/chemistry , Female , Humans , Hydrolysis , Immunoglobulin A, Secretory/metabolism , Immunoglobulin G/metabolism , Infant, Newborn , Lipids , MicroRNAs/genetics , MicroRNAs/metabolism , Milk, Human/metabolism , Plasma Cells/metabolism
16.
Int J Mol Sci ; 23(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36012448

ABSTRACT

Histones play vital roles in chromatin functioning and gene transcription, but in intercellular space, they are harmful due to stimulating systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the most important protein of the axon myelin-proteolipid sheath. Antibodies-abzymes with different catalytic activities are critical and specific features of some autoimmune diseases. Five IgG preparations against histones (H4, H1, H2A, H2B, and H3) and against MBP corresponding to different spontaneous, MOG (myelin oligodendrocyte glycoprotein of mice), and DNA-histones that accelerated onset, acute, and remission stages of experimental autoimmune encephalomyelitis (EAE; model of human multiple sclerosis) development were obtained from EAE-prone C57BL/6 mice by several affinity chromatographies. IgG-abzymes against five histones and MBP possess unusual polyreactivity in complexation and catalytic cross-reactivity in the hydrolysis of histone H4. IgGs against five histones and MBP corresponding to 3 month-old mice (zero time) in comparison with Abs corresponding to spontaneous development of EAE during 60 days differ in type and number of H4 sites for hydrolysis. Immunization of mice with MOG and DNA-histones complex results in an acceleration of EAE development associated with an increase in the activity of antibodies in H4 hydrolysis. Twenty days after mouse immunization with MOG or DNA-histones complex, the IgGs hydrolyze H4 at other additional sites compared to zero time. The maximum number of different sites of H4 hydrolysis was revealed for IgGs against five histones and MBP at 60 days after immunization of mice with MOG and DNA-histones. Overall, it first showed that at different stages of EAE development, abzymes could significantly differ in specific sites of H4 hydrolysis.


Subject(s)
Antibodies, Catalytic , Encephalomyelitis, Autoimmune, Experimental , Animals , DNA/metabolism , Histones/metabolism , Humans , Hydrolysis , Immunoglobulin G , Infant , Mice , Mice, Inbred C57BL , Myelin Basic Protein/metabolism , Myelin-Oligodendrocyte Glycoprotein
17.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743119

ABSTRACT

Only some human organs, including the liver, are capable of very weak self-regeneration. Some marine echinoderms are very useful for studying the self-regeneration processes of organs and tissues. For example, sea cucumbers Eupentacta fraudatrix (holothurians) demonstrate complete restoration of all organs and the body within several weeks after their division into two parts. Therefore, these cucumbers are a prospective model for studying the general mechanisms of self-regeneration. However, there is no data available yet concerning biomolecules of holothurians, which can stimulate the processes of organ and whole-body regeneration. Investigation of these restoration mechanisms is very important for modern medicine and biology because it can help to understand which hormones, nucleic acids, proteins, enzymes, or complexes play an essential role in self-regeneration. It is possible that stable, polyfunctional, high-molecular-weight protein complexes play an essential role in these processes. It has recently been shown that sea cucumbers Eupentacta fraudatrix contain a very stable multiprotein complex of about 2000 kDa. The first analysis of possible enzymatic activities of a stable protein complex was carried out in this work, revealing that the complex possesses several protease and DNase activities. The complex metalloprotease is activated by several metal ions (Zn2+ > Mn2+ > Mg2+). The relative contribution of metalloproteases (~63.4%), serine-like protease (~30.5%), and thiol protease (~6.1%) to the total protease activity of the complex was estimated. Metal-independent proteases of the complex hydrolyze proteins at trypsin-specific sites (after Lys and Arg). The complex contains both metal-dependent and metal-independent DNases. Mg2+, Mn2+, and Co2+ ions were found to strongly increase the DNase activity of the complex.


Subject(s)
Sea Cucumbers , Animals , Deoxyribonucleases/metabolism , Endopeptidases/metabolism , Humans , Metalloproteases/metabolism , Peptide Hydrolases/metabolism , Proteolysis , Sea Cucumbers/metabolism
18.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555744

ABSTRACT

Exosomes are nanovesicles with a 40-150 nm diameter and are essential for communication between cells. Literature data suggest that exosomes obtained from different sources (cell cultures, blood plasma, urea, saliva, tears, spinal fluid, milk) using a series of centrifugations and ultracentrifugations contain hundreds and thousands of different protein and nucleic acid molecules. However, most of these proteins are not an intrinsic part of exosomes; instead, they co-isolate with exosomes. Using consecutive ultracentrifugation, gel filtration, and affinity chromatography on anti-CD9- and anti-CD63-Sepharoses, we isolated highly purified vesicle preparations from 18 horse milk samples. Gel filtration of the initial preparations allowed us to remove co-isolating proteins and their complexes and to obtain highly purified vesicles morphologically corresponding to exosomes. Using affinity chromatography on anti-CD9- and anti-CD63-Sepharoses, we obtained extra-purified CD9+ and CD63+ exosomes, which simultaneously contain these two tetraspanins, while the CD81 tetraspanin was presented in a minor quantity. SDS-PAGE and MALDI analysis detected several major proteins with molecular masses over 10 kDa: CD9, CD63, CD81, lactadherin, actin, butyrophilin, lactoferrin, and xanthine dehydrogenase. Analysis of extracts by trifluoroacetic acid revealed dozens of peptides with molecular masses in the range of 0.8 to 8.5 kDa. Data on the uneven distribution of tetraspanins on the surface of horse milk exosomes and the presence of peptides open new questions about the biogenesis of these extracellular vesicles.


Subject(s)
Exosomes , Horses , Animals , Exosomes/metabolism , Milk , Proteins/metabolism , Tetraspanins/metabolism , Peptides/metabolism , Chromatography, Affinity
19.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430309

ABSTRACT

Changes in cytokine profiles and cytokine networks are known to be a hallmark of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). However, cytokine profiles research studies are usually based on the analysis of a small number of cytokines and give conflicting results. In this work, we analyzed cytokine profiles of 41 analytes in patients with SLE and MS compared with healthy donors using multiplex immunoassay. The SLE group included treated patients, while the MS patients were drug-free. Levels of 11 cytokines, IL-1b, IL-1RA, IL-6, IL-9, IL-10, IL-15, MCP-1/CCL2, Fractalkine/CX3CL1, MIP-1a/CCL3, MIP-1b/CCL4, and TNFa, were increased, but sCD40L, PDGF-AA, and MDC/CCL22 levels were decreased in SLE patients. Thus, changes in the cytokine profile in SLE have been associated with the dysregulation of interleukins, TNF superfamily members, and chemokines. In the case of MS, levels of 10 cytokines, sCD40L, CCL2, CCL3, CCL22, PDGF-AA, PDGF-AB/BB, EGF, IL-8, TGF-a, and VEGF, decreased significantly compared to the control group. Therefore, cytokine network dysregulation in MS is characterized by abnormal levels of growth factors and chemokines. Cross-disorder analysis of cytokine levels in MS and SLE showed significant differences between 22 cytokines. Protein interaction network analysis showed that all significantly altered cytokines in both SLE and MS are functionally interconnected. Thus, MS and SLE may be associated with impaired functional relationships in the cytokine network. A cytokine correlation networks analysis revealed changes in correlation clusters in SLE and MS. These data expand the understanding of abnormal regulatory interactions in cytokine profiles associated with autoimmune diseases.


Subject(s)
Lupus Erythematosus, Systemic , Multiple Sclerosis , Humans , Cytokines , Chemokines , Interleukins
20.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36430159

ABSTRACT

Since the onset of the COVID-19 pandemic, numerous publications have appeared describing autoimmune pathologies developing after a coronavirus infection, with several papers reporting autoantibody production during the acute period of the disease. Several viral diseases are known to trigger autoimmune processes, and the appearance of catalytic antibodies with DNase activity is one of the earliest markers of several autoimmune pathologies. Therefore, we analyzed whether IgG antibodies from blood plasma of SARS-CoV-2 patients after recovery could bind and hydrolyze DNA. We analyzed how vaccination of patients with adenovirus Sputnik V vaccine influences the production of abzymes with DNase activity. Four groups were selected for the analysis, each containing 25 patients according to their relative titers of antibodies to S-protein: with high and median titers, vaccinated with Sputnik V with high titers, and a control group of donors with negative titers. The relative titers of antibodies against DNA and the relative DNase activity of IgGs depended very much on the individual patient and the donor, and no significant correlation was found between the relative values of antibodies titers and their DNase activity. Our results indicate that COVID-19 disease and vaccination with adenoviral Sputnik V vaccine do not result in the development or enhancement of strong autoimmune reactions as in the typical autoimmune diseases associated with the production of anti-DNA and DNA hydrolyzing antibodies.


Subject(s)
Antibodies, Catalytic , COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Pandemics , Antibodies, Antinuclear , DNA , Immunoglobulin G , Deoxyribonucleases
SELECTION OF CITATIONS
SEARCH DETAIL