Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circulation ; 150(1): 7-18, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38808522

ABSTRACT

BACKGROUND: Current cardiovascular magnetic resonance sequences cannot discriminate between different myocardial extracellular space (ECSs), including collagen, noncollagen, and inflammation. We sought to investigate whether cardiovascular magnetic resonance radiomics analysis can distinguish between noncollagen and inflammation from collagen in dilated cardiomyopathy. METHODS: We identified data from 132 patients with dilated cardiomyopathy scheduled for an invasive septal biopsy who underwent cardiovascular magnetic resonance at 3 T. Cardiovascular magnetic resonance imaging protocol included native and postcontrast T1 mapping and late gadolinium enhancement (LGE). Radiomic features were computed from the midseptal myocardium, near the biopsy region, on native T1, extracellular volume (ECV) map, and LGE images. Principal component analysis was used to reduce the number of radiomic features to 5 principal radiomics. Moreover, a correlation analysis was conducted to identify radiomic features exhibiting a strong correlation (r>0.9) with the 5 principal radiomics. Biopsy samples were used to quantify ECS, myocardial fibrosis, and inflammation. RESULTS: Four histopathological phenotypes were identified: low collagen (n=20), noncollagenous ECS expansion (n=49), mild to moderate collagenous ECS expansion (n=42), and severe collagenous ECS expansion (n=21). Noncollagenous expansion was associated with the highest risk of myocardial inflammation (65%). Although native T1 and ECV provided high diagnostic performance in differentiating severe fibrosis (C statistic, 0.90 and 0.90, respectively), their performance in differentiating between noncollagen and mild to moderate collagenous expansion decreased (C statistic: 0.59 and 0.55, respectively). Integration of ECV principal radiomics provided better discrimination and reclassification between noncollagen and mild to moderate collagen (C statistic, 0.79; net reclassification index, 0.83 [95% CI, 0.45-1.22]; P<0.001). There was a similar trend in the addition of native T1 principal radiomics (C statistic, 0.75; net reclassification index, 0.93 [95% CI, 0.56-1.29]; P<0.001) and LGE principal radiomics (C statistic, 0.74; net reclassification index, 0.59 [95% CI, 0.19-0.98]; P=0.004). Five radiomic features per sequence were identified with correlation analysis. They showed a similar improvement in performance for differentiating between noncollagen and mild to moderate collagen (native T1, ECV, LGE C statistic, 0.75, 0.77, and 0.71, respectively). These improvements remained significant when confined to a single radiomic feature (native T1, ECV, LGE C statistic, 0.71, 0.70, and 0.64, respectively). CONCLUSIONS: Radiomic features extracted from native T1, ECV, and LGE provide incremental information that improves our capability to discriminate noncollagenous expansion from mild to moderate collagen and could be useful for detecting subtle chronic inflammation in patients with dilated cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated , Extracellular Matrix , Humans , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/pathology , Extracellular Matrix/pathology , Extracellular Matrix/metabolism , Female , Male , Middle Aged , Adult , Collagen/metabolism , Myocardium/pathology , Aged , Fibrosis , Magnetic Resonance Imaging/methods , Biopsy , Principal Component Analysis , Radiomics
2.
Radiology ; 310(1): e231269, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38193835

ABSTRACT

Cardiac MRI is used to diagnose and treat patients with a multitude of cardiovascular diseases. Despite the growth of clinical cardiac MRI, complicated image prescriptions and long acquisition protocols limit the specialty and restrain its impact on the practice of medicine. Artificial intelligence (AI)-the ability to mimic human intelligence in learning and performing tasks-will impact nearly all aspects of MRI. Deep learning (DL) primarily uses an artificial neural network to learn a specific task from example data sets. Self-driving scanners are increasingly available, where AI automatically controls cardiac image prescriptions. These scanners offer faster image collection with higher spatial and temporal resolution, eliminating the need for cardiac triggering or breath holding. In the future, fully automated inline image analysis will most likely provide all contour drawings and initial measurements to the reader. Advanced analysis using radiomic or DL features may provide new insights and information not typically extracted in the current analysis workflow. AI may further help integrate these features with clinical, genetic, wearable-device, and "omics" data to improve patient outcomes. This article presents an overview of AI and its application in cardiac MRI, including in image acquisition, reconstruction, and processing, and opportunities for more personalized cardiovascular care through extraction of novel imaging markers.


Subject(s)
Artificial Intelligence , Magnetic Resonance Imaging , Humans , Radiography , Neural Networks, Computer , Breath Holding
3.
J Magn Reson Imaging ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240166

ABSTRACT

BACKGROUND: Implantable cardioverter-defibrillator (ICD) intervention is an established prophylactic measure. Identifying high-benefit patients poses challenges. PURPOSE: To assess the prognostic value of cardiac magnetic resonance imaging (MRI) parameters including myocardial deformation for risk stratification of ICD intervention in non-ischemic cardiomyopathy (NICM) while accounting for competing mortality risk. STUDY TYPE: Retrospective and prospective. POPULATION: One hundred and fifty-nine NICM patients eligible for primary ICD (117 male, 54 ± 13 years) and 49 control subjects (38 male, 53 ± 5 years). FIELD STRENGTH/SEQUENCE: Balanced steady state free precession (bSSFP) and three-dimensional phase-sensitive inversion-recovery late gadolinium enhancement (LGE) sequences at 1.5 T or 3 T. ASSESSMENT: Patients underwent MRI before ICD implantation and were followed up. Functional parameters, left ventricular global radial, circumferential and longitudinal strain, right ventricular free wall longitudinal strain (RV FWLS) and left atrial strain were measured (Circle, cvi42). LGE presence was assessed visually. The primary endpoint was appropriate ICD intervention. Models were developed to determine outcome, with and without accounting for competing risk (non-sudden cardiac death), and compared to a baseline model including LGE and clinical features. STATISTICAL TESTS: Wilcoxon non-parametric test, Cox's proportional hazards regression, Fine-Gray competing risk model, and cumulative incidence functions. Harrell's c statistic was used for model selection. A P value <0.05 was considered statistically significant. RESULTS: Follow-up duration was 1176 ± 960 days (median: 896). Twenty-six patients (16%) met the primary endpoint. RV FWLS demonstrated a significant difference between patients with and without events (-12.5% ± 5 vs. -16.4% ± 5.5). Univariable analyses showed LGE and RV FWLS were significantly associated with outcome (LGE: hazard ratio [HR] = 3.69, 95% CI = 1.28-10.62; RV FWLS: HR = 2.04, 95% CI = 1.30-3.22). RV FWLS significantly improved the prognostic value of baseline model and remained significant in multivariable analysis, accounting for competing risk (HR = 1.73, 95% CI = 1.12-2.66). DATA CONCLUSIONS: In NICM, RV FWLS may provide additional predictive value for predicting appropriate ICD intervention. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 5.

4.
J Magn Reson Imaging ; 59(1): 179-189, 2024 01.
Article in English | MEDLINE | ID: mdl-37052580

ABSTRACT

BACKGROUND: In cardiac T1 mapping, a series of T1 -weighted (T1 w) images are collected and numerically fitted to a two or three-parameter model of the signal recovery to estimate voxel-wise T1 values. To reduce the scan time, one can collect fewer T1 w images, albeit at the cost of precision or/and accuracy. Recently, the feasibility of using a neural network instead of conventional two- or three-parameter fit modeling has been demonstrated. However, prior studies used data from a single vendor and field strength; therefore, the generalizability of the models has not been established. PURPOSE: To develop and evaluate an accelerated cardiac T1 mapping approach based on MyoMapNet, a convolution neural network T1 estimator that can be used across different vendors and field strengths by incorporating the relevant scanner information as additional inputs to the model. STUDY TYPE: Retrospective, multicenter. POPULATION: A total of 1423 patients with known or suspected cardiac disease (808 male, 57 ± 16 years), from three centers, two vendors (Siemens, Philips), and two field strengths (1.5 T, 3 T). The data were randomly split into 60% training, 20% validation, and 20% testing. FIELD STRENGTH/SEQUENCE: A 1.5 T and 3 T, Modified Look-Locker inversion recovery (MOLLI) for native and postcontrast T1 . ASSESSMENT: Scanner-independent MyoMapNet (SI-MyoMapNet) was developed by altering the deep learning (DL) architecture of MyoMapNet to incorporate scanner vendor and field strength as inputs. Epicardial and endocardial contours and blood pool (by manually drawing a large region of interest in the blood pool) of the left ventricle were manually delineated by three readers, with 2, 8, and 9 years of experience, and SI-MyoMapNet myocardial and blood pool T1 values (calculated from four T1 w images) were compared with conventional MOLLI T1 values (calculated from 8 to 11 T1 w images). STATISTICAL TESTS: Equivalency test with 95% confidence interval (CI), linear regression slope, Pearson correlation coefficient (r), Bland-Altman analysis. RESULTS: The proposed SI-MyoMapNet successfully created T1 maps. Native and postcontrast T1 values measured from SI-MyoMapNet were strongly correlated with MOLLI, despite using only four T1 w images, at both field-strengths and vendors (all r > 0.86). For native T1 , SI-MyoMapNet and MOLLI were in good agreement for myocardial and blood T1 values in institution 1 (myocardium: 5 msec, 95% CI [3, 8]; blood: -10 msec, 95%CI [-16, -4]), in institution 2 (myocardium: 6 msec, 95% CI [0, 11]; blood: 0 msec, [-18, 17]), and in institution 3 (myocardium: 7 msec, 95% CI [-8, 22]; blood: 8 msec, [-14, 30]). Similar results were observed for postcontrast T1 . DATA CONCLUSION: Inclusion of field strength and vendor as additional inputs to the DL architecture allows generalizability of MyoMapNet across different vendors or field strength. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Heart , Myocardium , Humans , Male , Retrospective Studies , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Heart Ventricles , Reproducibility of Results
5.
J Cardiovasc Magn Reson ; 26(1): 101033, 2024.
Article in English | MEDLINE | ID: mdl-38460840

ABSTRACT

BACKGROUND: Left ventricular ejection fraction (LVEF) is the most commonly clinically used imaging parameter for assessing cancer therapy-related cardiac dysfunction (CTRCD). However, LVEF declines may occur late, after substantial injury. This study sought to investigate cardiovascular magnetic resonance (CMR) imaging markers of subclinical cardiac injury in a miniature swine model. METHODS: Female Yucatan miniature swine (n = 14) received doxorubicin (2 mg/kg) every 3 weeks for 4 cycles. CMR, including cine, tissue characterization via T1 and T2 mapping, and late gadolinium enhancement (LGE) were performed on the same day as doxorubicin administration and 3 weeks after the final chemotherapy cycle. In addition, magnetic resonance spectroscopy (MRS) was performed during the 3 weeks after the final chemotherapy in 7 pigs. A single CMR and MRS exam were also performed in 3 Yucatan miniature swine that were age- and weight-matched to the final imaging exam of the doxorubicin-treated swine to serve as controls. CTRCD was defined as histological early morphologic changes, including cytoplasmic vacuolization and myofibrillar loss of myocytes, based on post-mortem analysis of humanely euthanized pigs after the final CMR exam. RESULTS: Of 13 swine completing 5 serial CMR scans, 10 (77%) had histological evidence of CTRCD. Three animals had neither histological evidence nor changes in LVEF from baseline. No absolute LVEF <40% or LGE was observed. Native T1, extracellular volume (ECV), and T2 at 12 weeks were significantly higher in swine with CTRCD than those without CTRCD (1178 ms vs. 1134 ms, p = 0.002, 27.4% vs. 24.5%, p = 0.03, and 38.1 ms vs. 36.4 ms, p = 0.02, respectively). There were no significant changes in strain parameters. The temporal trajectories in native T1, ECV, and T2 in swine with CTRCD showed similar and statistically significant increases. At the same time, there were no differences in their temporal changes between those with and without CTRCD. MRS myocardial triglyceride content substantially differed among controls, swine with and without CTRCD (0.89%, 0.30%, 0.54%, respectively, analysis of variance, p = 0.01), and associated with the severity of histological findings and incidence of vacuolated cardiomyocytes. CONCLUSION: Serial CMR imaging alone has a limited ability to detect histologic CTRCD beyond LVEF. Integrating MRS myocardial triglyceride content may be useful for detection of early potential CTRCD.


Subject(s)
Cardiotoxicity , Disease Models, Animal , Doxorubicin , Magnetic Resonance Imaging, Cine , Myocardium , Predictive Value of Tests , Stroke Volume , Swine, Miniature , Ventricular Function, Left , Animals , Female , Myocardium/pathology , Myocardium/metabolism , Swine , Ventricular Function, Left/drug effects , Stroke Volume/drug effects , Time Factors , Magnetic Resonance Spectroscopy , Antibiotics, Antineoplastic/adverse effects , Contrast Media , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/metabolism
6.
Radiology ; 307(5): e222878, 2023 06.
Article in English | MEDLINE | ID: mdl-37249435

ABSTRACT

Background Cardiac cine can benefit from deep learning-based image reconstruction to reduce scan time and/or increase spatial and temporal resolution. Purpose To develop and evaluate a deep learning model that can be combined with parallel imaging or compressed sensing (CS). Materials and Methods The deep learning model was built on the enhanced super-resolution generative adversarial inline neural network, trained with use of retrospectively identified cine images and evaluated in participants prospectively enrolled from September 2021 to September 2022. The model was applied to breath-hold electrocardiography (ECG)-gated segmented and free-breathing real-time cine images collected with reduced spatial resolution with use of generalized autocalibrating partially parallel acquisitions (GRAPPA) or CS. The deep learning model subsequently restored spatial resolution. For comparison, GRAPPA-accelerated cine images were collected. Diagnostic quality and artifacts were evaluated by two readers with use of Likert scales and compared with use of Wilcoxon signed-rank tests. Agreement for left ventricle (LV) function, volume, and strain was assessed with Bland-Altman analysis. Results The deep learning model was trained on 1616 patients (mean age ± SD, 56 years ± 16; 920 men) and evaluated in 181 individuals, 126 patients (mean age, 57 years ± 16; 77 men) and 55 healthy subjects (mean age, 27 years ± 10; 15 men). In breath-hold ECG-gated segmented cine and free-breathing real-time cine, the deep learning model and GRAPPA showed similar diagnostic quality scores (2.9 vs 2.9, P = .41, deep learning vs GRAPPA) and artifact score (4.4 vs 4.3, P = .55, deep learning vs GRAPPA). Deep learning acquired more sections per breath-hold than GRAPPA (3.1 vs one section, P < .001). In free-breathing real-time cine, the deep learning showed a similar diagnostic quality score (2.9 vs 2.9, P = .21, deep learning vs GRAPPA) and lower artifact score (3.9 vs 4.3, P < .001, deep learning vs GRAPPA). For both sequences, the deep learning model showed excellent agreement for LV parameters, with near-zero mean differences and narrow limits of agreement compared with GRAPPA. Conclusion Deep learning-accelerated cardiac cine showed similarly accurate quantification of cardiac function, volume, and strain to a standardized parallel imaging method. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.


Subject(s)
Magnetic Resonance Imaging, Cine , Magnetic Resonance Imaging , Male , Humans , Middle Aged , Adult , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , Ventricular Function, Left , Breath Holding , Neural Networks, Computer , Reproducibility of Results
7.
J Magn Reson Imaging ; 57(5): 1507-1515, 2023 05.
Article in English | MEDLINE | ID: mdl-35900119

ABSTRACT

BACKGROUND: Myocardial feature tracking (FT) provides a comprehensive analysis of myocardial deformation from cine balanced steady-state free-precession images (bSSFP). However, FT remains time-consuming, precluding its clinical adoption. PURPOSE: To compare left-ventricular global radial strain (GRS) and global circumferential strain (GCS) values measured using automated DeepStrain analysis of short-axis cine images to those calculated using manual commercially available FT analysis. STUDY TYPE: Retrospective, single-center. POPULATION: A total of 30 healthy subjects and 120 patients with cardiac disease for DeepStrain development. For evaluation, 47 healthy subjects (36 male, 53 ± 5 years) and 533 patients who had undergone a clinical cardiac MRI (373 male, 59 ± 14 years). FIELD STRENGTH/SEQUENCE: bSSFP sequence at 1.5 T (Phillips) and 3 T (Siemens). ASSESSMENT: Automated DeepStrain measurements of GRS and GCS were compared to commercially available FT (Circle, cvi42) measures obtained by readers with 1 year and 3 years of experience. Comparisons were performed overall and stratified by scanner manufacturer. STATISTICAL TESTS: Paired t-test, linear regression slope, Pearson correlation coefficient (r). RESULTS: Overall, FT and DeepStrain measurements of GCS were not significantly different (P = 0.207), but measures of GRS were significantly different. Measurements of GRS from Philips (slope = 1.06 [1.03 1.08], r = 0.85) and Siemens (slope = 1.04 [0.99 1.09], r = 0.83) data showed a very strong correlation and agreement between techniques. Measurements of GCS from Philips (slope = 0.98 [0.98 1.01], r = 0.91) and Siemens (slope = 1.0 [0.96 1.03], r = 0.88) data similarly showed a very strong correlation. The average analysis time per subject was 4.1 ± 1.2 minutes for FT and 34.7 ± 3.3 seconds for DeepStrain, representing a 7-fold reduction in analysis time. DATA CONCLUSION: This study demonstrated high correlation of myocardial GCS and GRS measurements between freely available fully automated DeepStrain and commercially available manual FT software, with substantial time-saving in the analysis. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Subject(s)
Magnetic Resonance Imaging, Cine , Ventricular Function, Left , Humans , Male , Magnetic Resonance Imaging, Cine/methods , Retrospective Studies , Magnetic Resonance Imaging/methods , Myocardium , Reproducibility of Results , Predictive Value of Tests
8.
J Cardiovasc Magn Reson ; 25(1): 56, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784153

ABSTRACT

BACKGROUND: Exercise cardiovascular magnetic resonance (Ex-CMR) myocardial tagging would enable quantification of myocardial deformation after exercise. However, current electrocardiogram (ECG)-segmented sequences are limited for Ex-CMR. METHODS: We developed a highly accelerated balanced steady-state free-precession real-time tagging technique for 3 T. A 12-fold acceleration was achieved using incoherent sixfold random Cartesian sampling, twofold truncated outer phase encoding, and a deep learning resolution enhancement model. The technique was tested in two prospective studies. In a rest study of 27 patients referred for clinical CMR and 19 healthy subjects, a set of ECG-segmented for comparison and two sets of real-time tagging images for repeatability assessment were collected in 2-chamber and short-axis views with spatiotemporal resolution 2.0 × 2.0 mm2 and 29 ms. In an Ex-CMR study of 26 patients with known or suspected cardiac disease and 23 healthy subjects, real-time images were collected before and after exercise. Deformation was quantified using measures of short-axis global circumferential strain (GCS). Two experienced CMR readers evaluated the image quality of all real-time data pooled from both studies using a 4-point Likert scale for tagline quality (1-excellent; 2-good; 3-moderate; 4-poor) and artifact level (1-none; 2-minimal; 3-moderate; 4-significant). Statistical evaluation included Pearson correlation coefficient (r), intraclass correlation coefficient (ICC), and coefficient of variation (CoV). RESULTS: In the rest study, deformation was successfully quantified in 90% of cases. There was a good correlation (r = 0.71) between ECG-segmented and real-time measures of GCS, and repeatability was good to excellent (ICC = 0.86 [0.71, 0.94]) with a CoV of 4.7%. In the Ex-CMR study, deformation was successfully quantified in 96% of subjects pre-exercise and 84% of subjects post-exercise. Short-axis and 2-chamber tagline quality were 1.6 ± 0.7 and 1.9 ± 0.8 at rest and 1.9 ± 0.7 and 2.5 ± 0.8 after exercise, respectively. Short-axis and 2-chamber artifact level was 1.2 ± 0.5 and 1.4 ± 0.7 at rest and 1.3 ± 0.6 and 1.5 ± 0.8 post-exercise, respectively. CONCLUSION: We developed a highly accelerated real-time tagging technique and demonstrated its potential for Ex-CMR quantification of myocardial deformation. Further studies are needed to assess the clinical utility of our technique.


Subject(s)
Heart , Magnetic Resonance Imaging, Cine , Humans , Prospective Studies , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests , Reproducibility of Results , Magnetic Resonance Spectroscopy , Ventricular Function, Left
9.
J Cardiovasc Magn Reson ; 25(1): 19, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36935515

ABSTRACT

INTRODUCTION: A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR. AIM: To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR. METHOD: A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43-74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom's structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months. RESULTS: The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≤ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13-38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%). CONCLUSION: The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR.


Subject(s)
Magnetic Resonance Imaging , Polyethylene , Humans , Reproducibility of Results , Sepharose , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Myocardium/pathology , Phantoms, Imaging , Magnetic Resonance Spectroscopy , Inflammation/pathology
10.
Magn Reson Med ; 88(6): 2573-2582, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35916305

ABSTRACT

PURPOSE: To improve the accuracy and robustness of T1 estimation by MyoMapNet, a deep learning-based approach using 4 inversion-recovery T1 -weighted images for cardiac T1 mapping. METHODS: MyoMapNet is a fully connected neural network for T1 estimation of an accelerated cardiac T1 mapping sequence, which collects 4 T1 -weighted images by a single Look-Locker inversion-recovery experiment (LL4). MyoMapNet was originally trained using in vivo data from the modified Look-Locker inversion recovery sequence, which resulted in significant bias and sensitivity to various confounders. This study sought to train MyoMapNet using signals generated from numerical simulations and phantom MR data under multiple simulated confounders. The trained model was then evaluated by phantom data scanned using new phantom vials that differed from those used for training. The performance of the new model was compared with modified Look-Locker inversion recovery sequence and saturation-recovery single-shot acquisition for measuring native and postcontrast T1 in 25 subjects. RESULTS: In the phantom study, T1 values measured by LL4 with MyoMapNet were highly correlated with reference values from the spin-echo sequence. Furthermore, the estimated T1 had excellent robustness to changes in flip angle and off-resonance. Native and postcontrast myocardium T1 at 3 Tesla measured by saturation-recovery single-shot acquisition, modified Look-Locker inversion recovery sequence, and MyoMapNet were 1483 ± 46.6 ms and 791 ± 45.8 ms, 1169 ± 49.0 ms and 612 ± 36.0 ms, and 1443 ± 57.5 ms and 700 ± 57.5 ms, respectively. The corresponding extracellular volumes were 22.90% ± 3.20%, 28.88% ± 3.48%, and 30.65% ± 3.60%, respectively. CONCLUSION: Training MyoMapNet with numerical simulations and phantom data will improve the estimation of myocardial T1 values and increase its robustness to confounders while also reducing the overall T1 mapping estimation time to only 4 heartbeats.


Subject(s)
Magnetic Resonance Imaging , Myocardium , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Reproducibility of Results
11.
Magn Reson Med ; 88(4): 1720-1733, 2022 10.
Article in English | MEDLINE | ID: mdl-35691942

ABSTRACT

PURPOSE: To develop and evaluate a free breathing non-electrocardiograph (ECG) myocardial T1 * mapping sequence using radial imaging to quantify the changes in myocardial T1 * between rest and exercise (T1 *reactivity ) in exercise cardiac MRI (Ex-CMR). METHODS: A free-running T1 * sequence was developed using a saturation pulse followed by three Look-Locker inversion-recovery experiments. Each Look-Locker continuously acquired data as radial trajectory using a low flip-angle spoiled gradient-echo readout. Self-navigation was performed with a temporal resolution of ∼100 ms for retrospectively extracting respiratory motion. The mid-diastole phase for every cardiac cycle was retrospectively detected on the recorded electrocardiogram signal using an empirical model. Multiple measurements were performed to obtain mean value to reduce effects from the free-breathing acquisition. Finally, data acquired at both mid-diastole and end-expiration are picked and reconstructed by a low-rank plus sparsity constraint algorithm. The performance of this sequence was evaluated by simulations, phantoms, and in vivo studies at rest and after physiological exercise. RESULTS: Numerical simulation demonstrated that changes in T1 * are related to the changes in T1 ; however, other factors such as breathing motion could influence T1 * measurements. Phantom T1 * values measured using free-running T1 * mapping sequence had good correlation with spin-echo T1 values and was insensitive to heart rate. In the Ex-CMR study, the measured T1 * reactivity was 10% immediately after exercise and declined over time. CONCLUSION: The free-running T1 * mapping sequence allows free-breathing non-ECG quantification of changes in myocardial T1 * with physiological exercise. Although, absolute myocardial T1 * value is sensitive to various confounders such as B1 and B0 inhomogeneity, quantification of its change may be useful in revealing myocardial tissue properties with exercise.


Subject(s)
Magnetic Resonance Imaging , Myocardium , Electrocardiography , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Reproducibility of Results , Retrospective Studies
12.
NMR Biomed ; 35(11): e4794, 2022 11.
Article in English | MEDLINE | ID: mdl-35767308

ABSTRACT

The objective of the current study was to investigate the performance of various deep learning (DL) architectures for MyoMapNet, a DL model for T1 estimation using accelerated cardiac T1 mapping from four T1 -weighted images collected after a single inversion pulse (Look-Locker 4 [LL4]). We implemented and tested three DL architectures for MyoMapNet: (a) a fully connected neural network (FC), (b) convolutional neural networks (VGG19, ResNet50), and (c) encoder-decoder networks with skip connections (ResUNet, U-Net). Modified Look-Locker inversion recovery (MOLLI) images from 749 patients at 3 T were used for training, validation, and testing. The first four T1 -weighted images from MOLLI5(3)3 and/or MOLLI4(1)3(1)2 protocols were extracted to create accelerated cardiac T1 mapping data. We also prospectively collected data from 28 subjects using MOLLI and LL4 to further evaluate model performance. Despite rigorous training, conventional VGG19 and ResNet50 models failed to produce anatomically correct T1 maps, and T1 values had significant errors. While ResUNet yielded good quality maps, it significantly underestimated T1 . Both FC and U-Net, however, yielded excellent image quality with good T1 accuracy for both native (FC/U-Net/MOLLI = 1217 ± 64/1208 ± 61/1199 ± 61 ms, all p < 0.05) and postcontrast myocardial T1 (FC/U-Net/MOLLI = 578 ± 57/567 ± 54/574 ± 55 ms, all p < 0.05). In terms of precision, the U-Net model yielded better T1 precision compared with the FC architecture (standard deviation of 61 vs. 67 ms for the myocardium for native [p < 0.05], and 31 vs. 38 ms [p < 0.05], for postcontrast). Similar findings were observed in prospectively collected LL4 data. It was concluded that U-Net and FC DL models in MyoMapNet enable fast myocardial T1 mapping using only four T1 -weighted images collected from a single LL sequence with comparable accuracy. U-Net also provides a slight improvement in precision.


Subject(s)
Deep Learning , Image Interpretation, Computer-Assisted , Heart/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Myocardium , Reproducibility of Results
13.
J Magn Reson Imaging ; 55(6): 1812-1825, 2022 06.
Article in English | MEDLINE | ID: mdl-34559435

ABSTRACT

BACKGROUND: Heart failure patients with preserved ejection fraction (HFpEF) are at increased risk of future hospitalization. Contrast agents are often contra-indicated in HFpEF patients due to the high prevalence of concomitant kidney disease. Therefore, the prognostic value of a noncontrast cardiac magnetic resonance imaging (MRI) for HF-hospitalization is important. PURPOSE: To develop and test an explainable machine learning (ML) model to investigate incremental value of noncontrast cardiac MRI for predicting HF-hospitalization. STUDY TYPE: Retrospective. POPULATION: A total of 203 HFpEF patients (mean, 64 ± 12 years, 48% women) referred for cardiac MRI were randomly split into training validation (143 patients, ~70%) and test sets (60 patients, ~30%). FIELD STRENGTH: A 1.5 T, balanced steady-state free precession (bSSFP) sequence. ASSESSMENT: Two ML models were built based on the tree boosting technique and the eXtreme Gradient Boosting model (XGBoost): 1) basic clinical ML model using clinical and echocardiographic data and 2) cardiac MRI-based ML model that included noncontrast cardiac MRI markers in addition to the basic model. The primary end point was defined as HF-hospitalization. STATISTICAL TESTS: ML tool was used for advanced statistics, and the Elastic Net method for feature selection. Area under the receiver operating characteristic (ROC) curve (AUC) was compared between models using DeLong's test. To gain insight into the ML model, the SHapley Additive exPlanations (SHAP) method was leveraged. A P-value <0.05 was considered statistically significant. RESULTS: During follow-up (mean, 50 ± 39 months), 85 patients (42%) reached the end point. The cardiac MRI-based ML model using the XGBoost algorithm provided a significantly superior prediction of HF-hospitalization (AUC: 0.81) compared to the basic model (AUC: 0.64). The SHAP analysis revealed left atrium (LA) and right atrium (RV) strains as top imaging markers contributing to its performance with cutoff values of 17.5% and -15%, respectively. DATA CONCLUSIONS: Using an ML model, RV and LA strains measured in noncontrast cardiac MRI provide incremental value in predicting future hospitalization in HFpEF. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Heart Failure , Female , Heart Failure/diagnostic imaging , Hospitalization , Humans , Magnetic Resonance Imaging , Male , Prognosis , Retrospective Studies , Stroke Volume , Ventricular Function, Left
14.
J Magn Reson Imaging ; 55(4): 1043-1059, 2022 04.
Article in English | MEDLINE | ID: mdl-34331487

ABSTRACT

Cardiovascular disease is the leading cause of death and a significant contributor of health care costs. Noninvasive imaging plays an essential role in the management of patients with cardiovascular disease. Cardiac magnetic resonance (MR) can noninvasively assess heart and vascular abnormalities, including biventricular structure/function, blood hemodynamics, myocardial tissue composition, microstructure, perfusion, metabolism, coronary microvascular function, and aortic distensibility/stiffness. Its ability to characterize myocardial tissue composition is unique among alternative imaging modalities in cardiovascular disease. Significant growth in cardiac MR utilization, particularly in Europe in the last decade, has laid the necessary clinical groundwork to position cardiac MR as an important imaging modality in the workup of patients with cardiovascular disease. Although lack of availability, limited training, physician hesitation, and reimbursement issues have hampered widespread clinical adoption of cardiac MR in the United States, growing clinical evidence will ultimately overcome these challenges. Advances in cardiac MR techniques, particularly faster image acquisition, quantitative myocardial tissue characterization, and image analysis have been critical to its growth. In this review article, we discuss recent advances in established and emerging cardiac MR techniques that are expected to strengthen its capability in managing patients with cardiovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.


Subject(s)
Cardiovascular Diseases , Cardiovascular Diseases/diagnostic imaging , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Myocardium
15.
J Cardiovasc Magn Reson ; 24(1): 40, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35761339

ABSTRACT

BACKGROUND: Myocardial scar burden quantified using late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR), has important prognostic value in hypertrophic cardiomyopathy (HCM). However, nearly 50% of HCM patients have no scar but undergo repeated gadolinium-based CMR over their life span. We sought to develop an artificial intelligence (AI)-based screening model using radiomics and deep learning (DL) features extracted from balanced steady state free precession (bSSFP) cine sequences to identify HCM patients without scar. METHODS: We evaluated three AI-based screening models using bSSFP cine image features extracted by radiomics, DL, or combined DL-Radiomics. Images for 759 HCM patients (50 ± 16 years, 66% men) in a multi-center/vendor study were used to develop and test model performance. An external dataset of 100 HCM patients (53 ± 14 years, 70% men) was used to assess model generalizability. Model performance was evaluated using area-under-receiver-operating curve (AUC). RESULTS: The DL-Radiomics model demonstrated higher AUC compared to DL and Radiomics in the internal (0.83 vs 0.77, p = 0.006 and 0.78, p = 0.05; n = 159) and external (0.74 vs 0.64, p = 0.006 and 0.71, p = 0.27; n = 100) datasets. The DL-Radiomics model correctly identified 43% and 28% of patients without scar in the internal and external datasets compared to 42% and 16% by Radiomics model and 42% and 23% by DL model, respectively. CONCLUSIONS: A DL-Radiomics AI model using bSSFP cine images outperforms DL or Radiomics models alone as a scar screening tool prior to gadolinium administration. Despite its potential, the clinical utility of the model remains limited and further investigation is needed to improve the accuracy and generalizability.


Subject(s)
Cardiomyopathy, Hypertrophic , Deep Learning , Artificial Intelligence , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cicatrix/diagnostic imaging , Cicatrix/etiology , Cicatrix/pathology , Contrast Media , Female , Gadolinium , Humans , Magnetic Resonance Imaging, Cine/methods , Male , Predictive Value of Tests
16.
J Cardiovasc Magn Reson ; 24(1): 6, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34986850

ABSTRACT

PURPOSE: To develop and evaluate MyoMapNet, a rapid myocardial T1 mapping approach that uses fully connected neural networks (FCNN) to estimate T1 values from four T1-weighted images collected after a single inversion pulse in four heartbeats (Look-Locker, LL4). METHOD: We implemented an FCNN for MyoMapNet to estimate T1 values from a reduced number of T1-weighted images and corresponding inversion-recovery times. We studied MyoMapNet performance when trained using native, post-contrast T1, or a combination of both. We also explored the effects of number of T1-weighted images (four and five) for native T1. After rigorous training using in-vivo modified Look-Locker inversion recovery (MOLLI) T1 mapping data of 607 patients, MyoMapNet performance was evaluated using MOLLI T1 data from 61 patients by discarding the additional T1-weighted images. Subsequently, we implemented a prototype MyoMapNet and LL4 on a 3 T scanner. LL4 was used to collect T1 mapping data in 27 subjects with inline T1 map reconstruction by MyoMapNet. The resulting T1 values were compared to MOLLI. RESULTS: MyoMapNet trained using a combination of native and post-contrast T1-weighted images had excellent native and post-contrast T1 accuracy compared to MOLLI. The FCNN model using four T1-weighted images yields similar performance compared to five T1-weighted images, suggesting that four T1 weighted images may be sufficient. The inline implementation of LL4 and MyoMapNet enables successful acquisition and reconstruction of T1 maps on the scanner. Native and post-contrast myocardium T1 by MOLLI and MyoMapNet was 1170 ± 55 ms vs. 1183 ± 57 ms (P = 0.03), and 645 ± 26 ms vs. 630 ± 30 ms (P = 0.60), and native and post-contrast blood T1 was 1820 ± 29 ms vs. 1854 ± 34 ms (P = 0.14), and 508 ± 9 ms vs. 514 ± 15 ms (P = 0.02), respectively. CONCLUSION: A FCNN, trained using MOLLI data, can estimate T1 values from only four T1-weighted images. MyoMapNet enables myocardial T1 mapping in four heartbeats with similar accuracy as MOLLI with inline map reconstruction.


Subject(s)
Deep Learning , Heart , Heart Rate , Humans , Magnetic Resonance Imaging , Predictive Value of Tests , Reproducibility of Results
17.
J Cardiovasc Magn Reson ; 24(1): 47, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35948936

ABSTRACT

BACKGROUND: Exercise cardiovascular magnetic resonance (Ex-CMR) is a promising stress imaging test for coronary artery disease (CAD). However, Ex-CMR requires accelerated imaging techniques that result in significant aliasing artifacts. Our goal was to develop and evaluate a free-breathing and electrocardiogram (ECG)-free real-time cine with deep learning (DL)-based radial acceleration for Ex-CMR. METHODS: A 3D (2D + time) convolutional neural network was implemented to suppress artifacts from aliased radial cine images. The network was trained using synthetic real-time radial cine images simulated using breath-hold, ECG-gated segmented Cartesian k-space data acquired at 3 T from 503 patients at rest. A prototype real-time radial sequence with acceleration rate = 12 was used to collect images with inline DL reconstruction. Performance was evaluated in 8 healthy subjects in whom only rest images were collected. Subsequently, 14 subjects (6 healthy and 8 patients with suspected CAD) were prospectively recruited for an Ex-CMR to evaluate image quality. At rest (n = 22), standard breath-hold ECG-gated Cartesian segmented cine and free-breathing ECG-free real-time radial cine images were acquired. During post-exercise stress (n = 14), only real-time radial cine images were acquired. Three readers evaluated residual artifact level in all collected images on a 4-point Likert scale (1-non-diagnostic, 2-severe, 3-moderate, 4-minimal). RESULTS: The DL model substantially suppressed artifacts in real-time radial cine images acquired at rest and during post-exercise stress. In real-time images at rest, 89.4% of scores were moderate to minimal. The mean score was 3.3 ± 0.7, representing increased (P < 0.001) artifacts compared to standard cine (3.9 ± 0.3). In real-time images during post-exercise stress, 84.6% of scores were moderate to minimal, and the mean artifact level score was 3.1 ± 0.6. Comparison of left-ventricular (LV) measures derived from standard and real-time cine at rest showed differences in LV end-diastolic volume (3.0 mL [- 11.7, 17.8], P = 0.320) that were not significantly different from zero. Differences in measures of LV end-systolic volume (7.0 mL [- 1.3, 15.3], P < 0.001) and LV ejection fraction (- 5.0% [- 11.1, 1.0], P < 0.001) were significant. Total inline reconstruction time of real-time radial images was 16.6 ms per frame. CONCLUSIONS: Our proof-of-concept study demonstrated the feasibility of inline real-time cine with DL-based radial acceleration for Ex-CMR.


Subject(s)
Coronary Artery Disease , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine , Respiratory-Gated Imaging Techniques , Coronary Artery Disease/diagnostic imaging , Deep Learning , Exercise Test , Feasibility Studies , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Reproducibility of Results , Respiratory-Gated Imaging Techniques/methods
18.
Magn Reson Med ; 85(1): 89-102, 2021 01.
Article in English | MEDLINE | ID: mdl-32662908

ABSTRACT

PURPOSE: To develop and validate a saturation-delay-inversion recovery preparation, slice tracking and multi-slice based sequence for measuring whole-heart native T1 . METHOD: The proposed free-breathing sequence performs T1 mapping of multiple left-ventricular slices by slice-interleaved acquisition to collect 10 electrocardiogram-triggered single-shot slice-selective images for each slice. A saturation-delay-inversion recovery pulse is used for T1 preparation. Prospective slice tracking by the diaphragm navigator and retrospective registration are used to reduce through-plane and in-plane motion, respectively. The proposed sequence was validated in both phantom and human subjects (12 healthy subjects and 15 patients who were referred for a clinical cardiac MR exam) and compared with saturation recovery single-shot acquisition (SASHA) and modified Look-Locker inversion recovery (MOLLI). RESULTS: Phantom T1 measured by the proposed sequence had excellent agreement (R2  = 0.99) with the ground-truth T1 and was insensitive to heart rate. In both healthy subjects and patients, the proposed sequence yielded nine left-ventricular T1 maps per volume in less than 2 minutes (healthy volunteers: 1.8 ± 0.4 minutes; patients: 1.9 ± 0.2 minutes). The average T1 of whole left ventricle for all healthy subjects and patients were 1560 ± 61 and 1535 ± 49 ms by SASHA, 1208 ± 42 and 1233 ± 56 ms by MOLLI5(3)3, and 1397 ± 34 and 1433 ± 56 ms by the proposed sequence, respectively. The corresponding coefficient of variation of T1 were 6.2 ± 1.4% and 5.8 ± 1.6%, 5.3 ± 1.1% and 5.1 ± 0.8%, and 4.9 ± 0.8% and 4.5 ± 0.8%, respectively. CONCLUSION: The proposed sequence enables quantification of whole heart T1 with good accuracy and precision in less than 2 minutes during free breathing.


Subject(s)
Heart , Magnetic Resonance Imaging , Myocardium , Heart/diagnostic imaging , Humans , Phantoms, Imaging , Prospective Studies , Reproducibility of Results , Retrospective Studies
19.
Magn Reson Med ; 86(2): 954-963, 2021 08.
Article in English | MEDLINE | ID: mdl-33764599

ABSTRACT

PURPOSE: To reduce inflow and motion artifacts in free-breathing, free-running, steady-state spoiled gradient echo T1 -weighted (SPGR) myocardial perfusion imaging. METHOD: Unsaturated spins from inflowing blood or out-of-plane motion cause flashing artifacts in free-running SPGR myocardial perfusion. During free-running SPGR, 1 non-selective RF excitation was added after every 3 slice-selective RF excitations to suppress inflow artifacts by forcing magnetization in neighboring regions to steady-state. Bloch simulations and phantom experiments were performed to evaluate the impact of the flip angle and non-selective RF frequency on inflowing spins and tissue contrast. Free-running perfusion with (n = 11) interleaved non-selective RF or without (n = 11) were studied in 22 subjects (age = 60.2 ± 14.3 years, 11 male). Perfusion images were graded on a 5-point Likert scale for conspicuity of wall enhancement, inflow/motion artifact, and streaking artifact and compared using Wilcoxon sum-rank testing. RESULT: Numeric simulation showed that 1 non-selective RF excitation applied after every 3 slice-selective RF excitations produced superior out-of-plane signal suppression compared to 1 non-selective RF excitation applied after every 6 or 9 slice-selective RF excitations. In vitro experiments showed that a 30° flip angle produced near-optimal myocardial contrast. In vivo experiments demonstrated that the addition of interleaved non-selective RF significantly (P < .01) improved conspicuity of wall enhancement (mean score = 4.4 vs. 3.2) and reduced inflow/motion (mean score = 4.5 vs. 2.5) and streaking (mean score = 3.9 vs. 2.4) artifacts. CONCLUSION: Non-selective RF excitations interleaved between slice-selective excitations can reduce image artifacts in free-breathing, ungated perfusion images. Further studies are warranted to assess the diagnostic accuracy of the proposed solution for evaluating myocardial ischemia.


Subject(s)
Artifacts , Myocardial Perfusion Imaging , Aged , Humans , Image Enhancement , Magnetic Resonance Imaging , Male , Middle Aged , Phantoms, Imaging , Respiration
20.
Magn Reson Med ; 85(3): 1308-1321, 2021 03.
Article in English | MEDLINE | ID: mdl-33078443

ABSTRACT

PURPOSE: To develop a free-breathing sequence, that is, Multislice Joint T1 -T2 , for simultaneous measurement of myocardial T1 and T2 for multiple slices to achieve whole left-ventricular coverage. METHODS: Multislice Joint T1 -T2 adopts slice-interleaved acquisition to collect 10 single-shot electrocardiogram-triggered images for each slice prepared by saturation and T2 preparation to simultaneously estimate myocardial T1 and T2 and achieve whole left-ventricular coverage. Prospective slice-tracking using a respiratory navigator and retrospective image registration are used to reduce through-plane and in-plane motion, respectively. Multislice Joint T1 -T2 was validated through numerical simulations and phantom and in vivo experiments, and compared with saturation-recovery single-shot acquisition and T2 -prepared balanced Steady-State Free Precession (T2 -prep SSFP) sequences. RESULTS: Phantom T1 and T2 from Multislice Joint T1 -T2 had good accuracy and precision, and were insensitive to heart rate. Multislice Joint T1 -T2 yielded T1 and T2 maps of nine left-ventricular slices in 1.4 minutes. The mean left-ventricular T1 difference between saturation-recovery single-shot acquisition and Multislice Joint T1 -T2 across healthy subjects and patients was 191 ms (1564 ± 60 ms versus 1373 ± 50 ms; P < .05) and 111 ms (1535 ± 49 ms vs 1423 ± 49 ms; P < .05), respectively. The mean difference in left-ventricular T2 between T2 -prep SSFP and Multislice Joint T1 -T2 across healthy subjects and patients was -6.3 ms (42.4 ± 1.4 ms vs 48.7 ± 2.5; P < .05) and -5.7 ms (41.6 ± 2.5 ms vs 47.3 ± 2.7; P < .05), respectively. CONCLUSION: Multislice Joint T1 -T2 enables quantification of whole left-ventricular T1 and T2 during free breathing within a clinically feasible scan time of less than 2 minutes.


Subject(s)
Heart Ventricles , Image Interpretation, Computer-Assisted , Heart , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Prospective Studies , Reproducibility of Results , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL