ABSTRACT
Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.
Subject(s)
Anti-Bacterial Agents , Drug Resistance, Microbial , Ecosystem , Fresh Water , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/drug effects , Bacteria/genetics , Fishes/microbiology , Environmental Monitoring , Water Pollutants, Chemical , Gene Transfer, Horizontal , Aquatic Organisms/genetics , Animals, Wild/microbiology , Drug Resistance, Bacterial/geneticsABSTRACT
Dredging and disposal of sediments onto land sites is a common practice in urban and industrial areas that can present environmental and health risks when the sediments contain metallic elements. The aim of this study was to characterise and study the environmental and toxicological availability of Cd and Pb in anthroposols from dredged river sediments. To do this, 67 surface samples spread over 12 sediment disposal sites in northern France were studied. The results showed substantial heterogeneity for this matrix in terms of physicochemical parameters and contamination degree; however, ascending hierarchical clustering made it possible to classify the samples into eight groups. For each group, the mobile fraction of Cd and Pb was studied using single EDTA extraction, solid-phase distribution was analysed with sequential extractions and toxicological availability was assessed with the oral bioaccessibility test. The results showed that (i) Cd had a higher environmental and toxicological availability than Pb; (ii) this availability depends on the physicochemical characteristics of the matrix; and (iii) it is necessary to take into account the environmental and toxicological availability of contaminants when requalifying these sites in order to propose appropriate management measures. In the first years after sediment disposal, it would appear that the environmental and toxicological availability of Cd and Pb increased (from 52.5 to 71.8% and from 28.9 to 48.9%, respectively, by using EDTA and from 50.2 to 68.5% for Cd with the bioaccessibility test). Further studies would therefore be required to confirm this trend and understand the mechanisms involved.