Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 23(4): 1289-1297, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36749085

ABSTRACT

Ceramic nanofibrous nanostructure-based sponges have attracted significant attention due to ultrahigh porosity, low thermal conductivity, large specific area, and chemical stability. From the regulation of the fiber itself to the construction method of 3D networks, efforts are being made to improve the mechanical properties of ceramic sponges for practical applications. So far resilient compressibility has been realized in ceramic nanofibrous-based sponges via structural design, but they still show brittle fracture under a more complex stress state. Herein, we introduced a highly aligned and interwoven Si3N4 nanofiber sponge, which exhibits superflexibility, large break elongation (>80%), large-strain reversible stretch (20%), and good resistance to tensile fatigue. The ceramic sponge also displays reversible compressibility up to 60% strain, puncture resistance, high air filtration efficiency (>99.8%), and low pressure drop (38% of cotton fiber), making the ceramic sponge a high-performance wearable respirator to protect us from harm due to PM2.5 pollution and possible microorganisms.

2.
ACS Nano ; 18(24): 15950-15957, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38847327

ABSTRACT

Resilient ceramic aerogels with a unique combination of lightweight, good high-temperature stability, high specific area, and thermal insulation properties are known for their promising applications in various fields. However, the mechanical properties of traditional ceramic aerogels are often constrained by insufficient interlocking of the building blocks. Here, we report a strategy to largely increase the interlocking degree of the building blocks by depositing a pyrolytic carbon (PyC) coating onto Si3N4 nanowires. The results show that the mechanical performances of the Si3N4 nanowire aerogels are intricately linked to the microstructure of the PyC nodes. The compression resilience of the Si3N4@PyC nanowire aerogels increases with an increase of the interlayer cross-linking in PyC. Additionally, benefiting from the excellent high-temperature stability of PyC, the Si3N4@PyC nanowire aerogels demonstrate significantly superior in situ resilience up to 1400 °C. The integrated mechanical and high-temperature properties of the Si3N4@PyC nanowire aerogels make them highly appealing for applications in harsh conditions. The facile method of manipulating the microstructure of the nodes may offer a perspective for tailoring the mechanical properties of ceramic aerogels.

SELECTION OF CITATIONS
SEARCH DETAIL