Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Development ; 148(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33913479

ABSTRACT

In each generation, the germline is tasked with producing somatic lineages that form the body, and segregating a population of cells for gametogenesis. During animal development, when do cells of the germline irreversibly commit to producing gametes? Integrating findings from diverse species, we conclude that the final commitment of the germline to gametogenesis - the process of germ cell determination - occurs after primordial germ cells (PGCs) colonize the gonads. Combining this understanding with medical findings, we present a model whereby germ cell tumors arise from cells that failed to undertake germ cell determination, regardless of their having colonized the gonads. We propose that the diversity of cell types present in these tumors reflects the broad developmental potential of migratory PGCs.


Subject(s)
Cell Differentiation , Cell Movement , Gametogenesis , Germ Cells/metabolism , Models, Biological , Neoplasms, Germ Cell and Embryonal/metabolism , Animals , Germ Cells/pathology , Humans , Neoplasms, Germ Cell and Embryonal/pathology
2.
BMC Biol ; 20(1): 133, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35676717

ABSTRACT

BACKGROUND: The mammalian X and Y chromosomes originated from a pair of ordinary autosomes. Over the past ~180 million years, the X and Y have become highly differentiated and now only recombine with each other within a short pseudoautosomal region. While the X chromosome broadly preserved its gene content, the Y chromosome lost ~92% of the genes it once shared with the X chromosome. PRSSLY is a Y-linked gene identified in only a few mammalian species that was thought to be acquired, not ancestral. However, PRSSLY's presence in widely divergent species-bull and mouse-led us to further investigate its evolutionary history. RESULTS: We discovered that PRSSLY is broadly conserved across eutherians and has ancient origins. PRSSLY homologs are found in syntenic regions on the X chromosome in marsupials and on autosomes in more distant animals, including lizards, indicating that PRSSLY was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals. We found that across eutheria, PRSSLY's expression is testis-specific, and, in mouse, it is most robustly expressed in post-meiotic germ cells. The closest paralog to PRSSLY is the autosomal gene PRSS55, which is expressed exclusively in testes, involved in sperm differentiation and migration, and essential for male fertility in mice. Outside of eutheria, in species where PRSSLY orthologs are not Y-linked, we find expression in a broader range of somatic tissues, suggesting that PRSSLY has adopted a germ-cell-specific function in eutherians. Finally, we generated Prssly mutant mice and found that they are fully fertile but produce offspring with a modest female-biased sex ratio compared to controls. CONCLUSIONS: PRSSLY appears to be the first example of a gene that derives from the mammalian ancestral sex chromosomes that was lost from the X and retained on the Y. Although the function of PRSSLY remains to be determined, it may influence the sex ratio by promoting the survival or propagation of Y-bearing sperm.


Subject(s)
Eutheria , Y Chromosome , Animals , Cattle , Eutheria/genetics , Female , Male , Mammals/genetics , Mice , Sex Chromosomes/genetics , X Chromosome/genetics , Y Chromosome/genetics
3.
Br J Cancer ; 127(9): 1577-1583, 2022 11.
Article in English | MEDLINE | ID: mdl-36229581

ABSTRACT

Germ cell tumours (GCTs) are a heterogeneous group of rare neoplasms that present in different anatomical sites and across a wide spectrum of patient ages from birth through to adulthood. Once these strata are applied, cohort numbers become modest, hindering inferences regarding management and therapeutic advances. Moreover, patients with GCTs are treated by different medical professionals including paediatric oncologists, neuro-oncologists, medical oncologists, neurosurgeons, gynaecological oncologists, surgeons, and urologists. Silos of care have thus formed, further hampering knowledge dissemination between specialists. Dedicated biobank specimen collection is therefore critical to foster continuous growth in our understanding of similarities and differences by age, gender, and site, particularly for rare cancers such as GCTs. Here, the Malignant Germ Cell International Consortium provides a framework to create a sustainable, global research infrastructure that facilitates acquisition of tissue and liquid biopsies together with matched clinical data sets that reflect the diversity of GCTs. Such an effort would create an invaluable repository of clinical and biological data which can underpin international collaborations that span professional boundaries, translate into clinical practice, and ultimately impact patient outcomes.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Child , Humans , Adult , Male , Translational Research, Biomedical , Neoplasms, Germ Cell and Embryonal/therapy , Testicular Neoplasms/pathology
4.
Proc Natl Acad Sci U S A ; 116(51): 25677-25687, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31754036

ABSTRACT

Mammalian primordial germ cells (PGCs) are induced in the embryonic epiblast, before migrating to the nascent gonads. In fish, frogs, and birds, the germline segregates even earlier, through the action of maternally inherited germ plasm. Across vertebrates, migrating PGCs retain a broad developmental potential, regardless of whether they were induced or maternally segregated. In mammals, this potential is indicated by expression of pluripotency factors, and the ability to generate teratomas and pluripotent cell lines. How the germline loses this developmental potential remains unknown. Our genome-wide analyses of embryonic human and mouse germlines reveal a conserved transcriptional program, initiated in PGCs after gonadal colonization, that differentiates germ cells from their germline precursors and from somatic lineages. Through genetic studies in mice and pigs, we demonstrate that one such gonad-induced factor, the RNA-binding protein DAZL, is necessary in vivo to restrict the developmental potential of the germline; DAZL's absence prolongs expression of a Nanog pluripotency reporter, facilitates derivation of pluripotent cell lines, and causes spontaneous gonadal teratomas. Based on these observations in humans, mice, and pigs, we propose that germ cells are determined after gonadal colonization in mammals. We suggest that germ cell determination was induced late in embryogenesis-after organogenesis has begun-in the common ancestor of all vertebrates, as in modern mammals, where this transition is induced by somatic cells of the gonad. We suggest that failure of this process of germ cell determination likely accounts for the origin of human testis cancer.


Subject(s)
Cell Differentiation/genetics , Embryo, Mammalian , Gene Expression Regulation, Developmental/genetics , Germ Cells , Gonads , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology , Female , Germ Cells/metabolism , Germ Cells/physiology , Gonads/cytology , Gonads/physiology , Male , Mice , Ovarian Neoplasms/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Swine , Teratoma/genetics , Testicular Neoplasms/genetics
5.
PLoS Genet ; 11(3): e1005019, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25739037

ABSTRACT

In mouse embryos at mid-gestation, primordial germ cells (PGCs) undergo licensing to become gametogenesis-competent cells (GCCs), gaining the capacity for meiotic initiation and sexual differentiation. GCCs then initiate either oogenesis or spermatogenesis in response to gonadal cues. Germ cell licensing has been considered to be a cell-autonomous and gonad-independent event, based on observations that some PGCs, having migrated not to the gonad but to the adrenal gland, nonetheless enter meiosis in a time frame parallel to ovarian germ cells -- and do so regardless of the sex of the embryo. Here we test the hypothesis that germ cell licensing is cell-autonomous by examining the fate of PGCs in Gata4 conditional mutant (Gata4 cKO) mouse embryos. Gata4, which is expressed only in somatic cells, is known to be required for genital ridge initiation. PGCs in Gata4 cKO mutants migrated to the area where the genital ridge, the precursor of the gonad, would ordinarily be formed. However, these germ cells did not undergo licensing and instead retained characteristics of PGCs. Our results indicate that licensing is not purely cell-autonomous but is induced by the somatic genital ridge.


Subject(s)
Gametogenesis , Germ Cells/cytology , Germ Cells/metabolism , Animals , Embryo, Mammalian/metabolism , GATA4 Transcription Factor/metabolism , Gonads/metabolism , Meiosis , Mice , RNA-Binding Proteins/metabolism
6.
Reprod Fertil Dev ; 29(3): 609-620, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26488911

ABSTRACT

A dynamic partnership between follicle-stimulating hormone (FSH) and activin is required for normal Sertoli cell development and fertility. Disruptions to this partnership trigger Sertoli cells to deviate from their normal developmental pathway, as observed in inhibin α-knockout (Inha-KO) mice, which feature Sertoli cell tumours in adulthood. Here, we identified the developmental windows by which adult Sertoli cell tumourigenesis is most FSH sensitive. FSH was suppressed for 7 days in Inha-KO mice and wild-type littermates during the 1st, 2nd or 4th week after birth and culled in the 5th week to assess the effect on adult Sertoli cell development. Tumour growth was profoundly reduced in adult Inha-KO mice in response to FSH suppression during Weeks 1 and 2, but not Week 4. Proliferative Sertoli cells were markedly reduced in adult Inha-KO mice following FSH suppression during Weeks 1, 2 or 4, resulting in levels similar to those in wild-type mice, with greatest effect observed at the 2 week time point. Apoptotic Sertoli cells increased in adult Inha-KO mice after FSH suppression during Week 4. In conclusion, acute FSH suppression during the 1st or 2nd week after birth in Inha-KO mice profoundly suppresses Sertoli cell tumour progression, probably by inhibiting proliferation in the adult, with early postnatal Sertoli cells being most sensitive to FSH action.


Subject(s)
Inhibins/metabolism , Sertoli Cell Tumor/pathology , Spermatogenesis/genetics , Testicular Neoplasms/pathology , Activins/blood , Animals , Follicle Stimulating Hormone/blood , Inhibins/genetics , Male , Mice , Mice, Knockout , Sertoli Cell Tumor/genetics , Sertoli Cell Tumor/metabolism , Sertoli Cells/metabolism , Sertoli Cells/pathology , Testicular Neoplasms/genetics , Testicular Neoplasms/metabolism , Testis/metabolism , Testis/pathology
7.
J Biol Chem ; 289(50): 34490-502, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25320092

ABSTRACT

ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1(-/-) mice have reduced viability and fail to thrive early after birth. Male Ube2j1(-/-) mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1(-/-) elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control.


Subject(s)
Spermatogenesis , Ubiquitin-Conjugating Enzymes/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Immunoglobulins/metabolism , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Mice , Spermatids/cytology , Spermatids/pathology , Ubiquitin-Conjugating Enzymes/deficiency , Unfolded Protein Response , Up-Regulation
8.
Biol Reprod ; 88(3): 60, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23303684

ABSTRACT

Tubulobulbar complexes are cytoskeleton-related membrane structures that develop at sites of intercellular attachment in mammalian seminiferous epithelium. At apical junctions between Sertoli cells and spermatids, the structures internalize adhesion junctions and are a component of the sperm release mechanism. Here we explore the possibility that tubulobulbar complexes that form at the blood-testis barrier are subcellular machines that internalize basal junction complexes. Using electron microscopy, we confirmed that morphologically identifiable tight and gap junctions are present in basal tubulobulbar complexes in rats. In addition, immunological probes for claudin-11 (CLDN11), connexin-43 (GJA1), and nectin-2 (PVRL2) react with linear structures at the light level that we interpret as tubulobulbar complexes, and probes for early endosome antigen 1 (EEA1) and Rab5 (RAB5A) react in similar locations. Significantly, fluorescence patterns for actin and claudin-11 indicate that the amount of junction present is dramatically reduced over the time period that tubulobulbar complexes are known to be most prevalent during spermatogenesis. We also demonstrated, using electron microscopy and fluorescence microscopy, that tubulobulbar complexes develop at basal junctions in primary cultures of Sertoli cells and that like their in vivo counterparts, the structures contain junction proteins. We use this culture system together with transfection techniques to show that junction proteins from one transfected cell occur in structures that project into adjacent nontransfected cells as predicted by the junction internalization hypothesis. On the basis of our findings, we present a new model for basal junction remodeling as it relates to spermatocyte translocation in the seminiferous epithelium.


Subject(s)
Intercellular Junctions/physiology , Seminiferous Epithelium/physiology , Animals , Cell Adhesion Molecules/metabolism , Cells, Cultured , Claudins/metabolism , Connexin 43/metabolism , Endocytosis , Intercellular Junctions/ultrastructure , Male , Nectins , Rats , Rats, Sprague-Dawley , Sertoli Cells/physiology , Vesicular Transport Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism
9.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37745561

ABSTRACT

Malignant testicular germ cells tumors (TGCTs) are the most common solid cancers in young men. Current TGCT diagnostics include conventional serum protein markers, but these lack the sensitivity and specificity to serve as accurate markers across all TGCT subtypes. MicroRNAs (miRNAs) are small non-coding regulatory RNAs and informative biomarkers for several diseases. In humans, miRNAs of the miR-371-373 cluster are detectable in the serum of patients with malignant TGCTs and outperform existing serum protein markers for both initial diagnosis and subsequent disease monitoring. We previously developed a genetically engineered mouse model featuring malignant mixed TGCTs consisting of pluripotent embryonal carcinoma (EC) and differentiated teratoma that, like the corresponding human malignancies, originate in utero and are highly chemosensitive. Here, we report that miRNAs in the mouse miR-290-295 cluster, homologs of the human miR-371-373 cluster, were detectable in serum from mice with malignant TGCTs but not from tumor-free control mice or mice with benign teratomas. miR-291-293 were expressed and secreted specifically by pluripotent EC cells, and expression was lost following differentiation induced by the drug thioridazine. Notably, miR-291-293 levels were significantly higher in the serum of pregnant dams carrying tumor-bearing fetuses compared to that of control dams. These findings reveal that expression of the miR-290-295 and miR-371-373 clusters in mice and humans, respectively, is a conserved feature of malignant TGCTs, further validating the mouse model as representative of the human disease. These data also highlight the potential of serum miR-371-373 assays to improve patient outcomes through early TGCT detection, possibly even prenatally.

10.
Biochem Biophys Res Commun ; 419(4): 809-14, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22390935

ABSTRACT

Proprotein convertases (PCs) play critical roles in cleaving precursor proteins (growth factors, hormones, receptors and adhesion molecules) for activation. PCs are implicated in a number of cellular functions, including oncogenesis. Endometrial cancer is the most common gynecological cancer in the developed world, but the involvement of PCs is unclear. To characterize the role of PCs in endometrial cancer, we assessed expression of seven PCs (PC1/3, PC2, PACE4, PC4, furin, PC5/6 and PC7) by RT-PCR in six well characterized endometrial cancer cell lines. Expression was variable in all lines, with furin being most consistently expressed in all cell lines tested. We next determined the cellular localization and expression levels of four ubiquitously expressed PCs (furin, PACE4, PC5/6 and PC7) in post-menopausal endometrial biopsies from control (n=7) and endometrial cancer patients (n=30) by immunohistochemistry. Furin increased in tumors, whereas PC5/6, PACE4 and PC7 expression was reduced with increasing cancer grades. Uterine lavage is a non-invasive source material for evaluating the endometrium. We thus assessed whether total PC activity was altered in uterine lavage of endometrial cancer patients (n=36) compared to controls (n=10). PC activity was detected in all uterine lavage samples, and significantly elevated in all grades of endometrial cancer. This study demonstrates a complex association between individual PCs and endometrial cancer. Importantly, we show that monitoring the total PC activity in uterine lavage may provide a rapid and non-invasive method for the diagnosis of endometrial cancer in postmenopausal women.


Subject(s)
Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/enzymology , Proprotein Convertases/biosynthesis , Cell Line, Tumor , Endometrial Neoplasms/pathology , Female , Humans , Postmenopause , Proprotein Convertases/analysis , Proprotein Convertases/genetics , Reverse Transcriptase Polymerase Chain Reaction
11.
Biol Reprod ; 87(2): 38, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22623623

ABSTRACT

Sertoli cell tight junctions (TJs) form at puberty as a major component of the blood-testis barrier (BTB), which is essential for spermatogenesis. This study characterized the hormonal induction of functional Sertoli cell TJ formation in vivo using the gonadotropin-deficient hypogonadal (hpg) mouse that displays prepubertal spermatogenic arrest. Androgen actions were determined in hpg mice treated for 2 or 10 days with dihydrotestosterone (DHT). Follicle-stimulating hormone (FSH) actions were studied in hpg mice expressing transgenic human FSH (hpg+tgFSH) with or without DHT treatment. TJ formation was examined by mRNA expression and immunolocalization of TJ proteins claudin-3 and claudin-11, and barrier functionality was examined by biotin tracer permeability. Immunolocalization of claudin-3 and claudin-11 was extensive at wild-type (wt) Sertoli cell TJs, which functionally excluded permeability tracer. In contrast, seminiferous tubules of hpg testes lacked claudin-3, but claudin-11 protein was present in adluminal regions of Sertoli cells. Biotin tracer permeated throughout these tubules, demonstrating dysfunctional TJs. In hpg+tgFSH testes, claudin-3 was generally absent, but claudin-11 had redistributed basally toward the TJs, where function was variable. In hpg testes, DHT treatment stimulated the redistribution of claudin-11 protein toward the basal region of Sertoli cells by Day 2, increased Cldn3 and Cldn11 mRNA expression, then induced the formation of functional TJs containing both proteins by Day 10. In hpg+tgFSH testes, TJ protein redistribution was accelerated and functional TJs formed by Day 2 of DHT treatment. We conclude that androgen stimulates initial Sertoli cell TJ formation and function in mice, whereas FSH activity is insufficient alone, but augments androgen-induced TJ function.


Subject(s)
Androgens/physiology , Follicle Stimulating Hormone/physiology , Sertoli Cells/physiology , Tight Junctions/physiology , Animals , Connexins/metabolism , Dihydrotestosterone , Disease Models, Animal , Humans , Hypogonadism , Male , Mice , Mice, Transgenic , Organ Size , RNA, Messenger/metabolism , Rats
12.
Reprod Biol Endocrinol ; 9: 43, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21466712

ABSTRACT

BACKGROUND: Proprotein convertase 5/6 (PC5/6) is critical for embryo implantation in women, regulating both uterine epithelial receptivity and stromal cell decidualization. PC5/6 is likewise essential for implantation in mice, but involved only in decidualization. An alternative animal model is required to address the function of PC5/6 in the uterine epithelium. This study aimed to establish whether PC5/6 is associated with embryo implantation in rabbits. METHODS: Virgin New-Zealand white rabbits aged 3-4 moths were mated with males of the same strain, or pseudo-pregnancy induced. After mating, uterine tissues were collected over a 10 day (d) period (n = 3 per time point) for RNA, protein and histological analyses to determine the temporal and spatial uterine expression pattern of PC5/6 during the initial stages of pregnancy or induced pseudo-pregnancy. RESULTS: PC5/6 mRNA was up-regulated just prior to embryo attachment on d6, and the elevated expression was maintained throughout implantation on d6.5-10. Western analysis revealed a preferential up-regulation of PC5/6 in the implantation sites. Immunohistochemical analysis identified that both the amount and cellular localization of PC5/6 changed with increasing pregnancy stages. Before embryo attachment, PC5/6 was low and localised in the luminal and glandular epithelium. It increased on d6.5 in the basal glands and mucosal folds, and then strongly intensified on d7-10 in the multinucleated luminal symplasma and decidual cells at the site of embryo implantation. In contrast, the pseudo-pregnant uterus displayed relatively low and static PC6 mRNA expression throughout the 10 days, with no obvious changes in either PC5/6 level or cellular localization. CONCLUSIONS: These findings demonstrate that embryo implantation in the rabbit is closely associated with dynamic expression of uterine PC5/6, and that the rabbit may be an appropriate model to investigate the function of PC5/6 in the uterine epithelium during embryo attachment.


Subject(s)
Embryo Implantation/physiology , Pregnancy/metabolism , Proprotein Convertase 5/metabolism , Uterus/metabolism , Animals , Female , Models, Animal , Proprotein Convertase 5/genetics , RNA, Messenger/metabolism , Rabbits , Up-Regulation
13.
J Proteome Res ; 9(5): 2438-49, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20199104

ABSTRACT

Endometriosis is a chronic disorder affecting approximately 10% of women in whom endometrial tissue forms painful lesions outside the uterus. It has a major impact on their physical, mental and social well-being but has no known cure, and there is no nonsurgical means of diagnosis. We have used a proteomic approach to identify proteins with altered abundance in the eutopic endometrium of endometriosis patients in the midsecretory phase of the menstrual cycle. 2D-differential in gel electrophoresis (DIGE) and mass spectrometry identified 20 proteins that were present at different levels in endometriosis patients (p < 0.05), many of which have not previously been associated with endometriosis. Protein abundance changes did not correlate well with published gene array data, emphasizing the extensive post-translational modification that occurs in this tissue. Abundance or localization changes in endometrial tissue were validated by immunohistochemistry and Western blotting for three proteins, vimentin (VIM), peroxiredoxin 6 (PRDX6), and ribonuclease/angiogenin inhibitor 1 (RNH1), while observed changes could not be confirmed for coronin 1A (CORO1A) or transgelin (TAGLN2). In addition, multiple charge and size isoforms were observed for PDRX6 and vimentin (VIM), and an additional PDRX6 isoform was observed in endometriosis patients that was below the level of detection in healthy women. Biological pathway analysis identified that cytoskeletal remodeling via keratin intermediate filaments, processing of the cystic fibrosis transmembrane receptor (CFTR), the glucocorticoid receptor subunit alpha (GCR), and heat shock factor 1 (HSF1) were all significantly over-represented features in endometriosis patients. This study highlights the highly dynamic nature of endometrial tissue and suggests that considerable post-translational modification of proteins is a key factor in the pathology of endometriosis.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Endometriosis/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Blotting, Western , Carrier Proteins/metabolism , Cluster Analysis , Databases, Genetic , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Peroxiredoxin VI/metabolism , Protein Isoforms , Proteomics/methods , Reproducibility of Results , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Statistics, Nonparametric
14.
Reprod Biol Endocrinol ; 8: 63, 2010 Jun 17.
Article in English | MEDLINE | ID: mdl-20553623

ABSTRACT

BACKGROUND: Interleukin (IL) 11 is produced by human endometrium and endometrial cancer tissue. It has roles in endometrial epithelial cell adhesion and trophoblast cell invasion, two important processes in cancer progression. This study aimed to determine the levels of IL11 in uterine lavage fluid in women with endometrial cancer and postmenopausal women. It further aimed to determine the levels of IL11 protein and its signaling molecules in human endometrial cancer of varying grades, and endometrium from postmenopausal women and IL11 signalling mechanisms in endometrial cancer cell lines. METHODS: IL11 levels in uterine lavage were measured by ELISA. IL11, IL11 receptor(R) alpha, phosphorylated (p) STAT3 and SOCS3 were examined by immunohistochemistry in endometrial carcinomas and in control endometrium from postmenopausal women and normal cycling women. The effect of IL11 on pSTAT3/STAT3 and SOCS3 protein abundance in endometrial cancer cell lines and non-cancer endometrial epithelial cells was determined by Western blot. RESULTS: IL11 was present in uterine flushings and was significantly higher in women with Grade 1 carcinomas compared to postmenopausal women (p < 0.05). IL11 immunostaining was significantly elevated in the endometrial tumour epithelial cells from Grade 1 and 3 compared to endometrial epithelium from postmenopausal and cycling women. IL11R alpha immunostaining intensity was increased in cancer epithelium in the Grades 1 and 2 tumours compared to epithelium from postmenopausal women. Both IL11 and IL11R alpha localized to vascular endothelial and smooth muscle cells while IL11 also localized to subsets of leucocytes in the cancer tissues. pSTAT3 was found in both the tumour epithelial and stromal compartments but was maximal in the tumour epithelial cells, while SOCS3 was predominantly found in the tumour epithelial cells. pSTAT3 staining intensity was significantly higher in Grade 1 and 2 tumour epithelial cells compared to epithelial cells from cycling and postmenopausal women. SOCS3 staining intensity did not differ between between each tumour and postmenopausal endometrial epithelium but SOCS3 in cycling endometrium was significantly higher compared to postmenopausal and Tumour Grades 2 and 3. IL11 increased pSTAT3/STAT3 in all tumour cell lines, while SOCS3 abundance was increased only in one tumour cell line. CONCLUSIONS: The present study suggests that IL11 in uterine washings may be useful as a diagnostic marker for early stage endometrial cancer. It indicates that IL11, along with its specific receptor, IL11R alpha, and downstream signalling molecules, STAT3 and SOCS3, are likely to play a role in the progression of endometrial carcinoma. The precise role of IL11 in endometrial cancer remains to be elucidated.


Subject(s)
Carcinoma/metabolism , Endometrial Neoplasms/metabolism , Interleukin-11/metabolism , Uterus/metabolism , Adult , Aged , Aged, 80 and over , Carcinoma/pathology , Cell Line, Tumor , Endometrial Neoplasms/pathology , Female , Humans , Interleukin-11/physiology , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11 Receptor alpha Subunit/physiology , Middle Aged , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Therapeutic Irrigation , Up-Regulation , Uterus/pathology
15.
Elife ; 92020 07 20.
Article in English | MEDLINE | ID: mdl-32686646

ABSTRACT

Fertility across metazoa requires the germline-specific DAZ family of RNA-binding proteins. Here we examine whether DAZL directly regulates progenitor spermatogonia using a conditional genetic mouse model and in vivo biochemical approaches combined with chemical synchronization of spermatogenesis. We find that the absence of Dazl impairs both expansion and differentiation of the spermatogonial progenitor population. In undifferentiated spermatogonia, DAZL binds the 3' UTRs of ~2,500 protein-coding genes. Some targets are known regulators of spermatogonial proliferation and differentiation while others are broadly expressed, dosage-sensitive factors that control transcription and RNA metabolism. DAZL binds 3' UTR sites conserved across vertebrates at a UGUU(U/A) motif. By assessing ribosome occupancy in undifferentiated spermatogonia, we find that DAZL increases translation of its targets. In total, DAZL orchestrates a broad translational program that amplifies protein levels of key spermatogonial and gene regulatory factors to promote the expansion and differentiation of progenitor spermatogonia.


Subject(s)
Cell Differentiation , RNA-Binding Proteins , Spermatogenesis , 3' Untranslated Regions , Animals , Cell Differentiation/physiology , Male , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Spermatogenesis/physiology , Spermatogonia/metabolism
16.
Dev Cell ; 52(1): 53-68.e6, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31839538

ABSTRACT

GCNA proteins are expressed across eukarya in pluripotent cells and have conserved functions in fertility. GCNA homologs Spartan (DVC-1) and Wss1 resolve DNA-protein crosslinks (DPCs), including Topoisomerase-DNA adducts, during DNA replication. Here, we show that GCNA mutants in mouse and C. elegans display defects in genome maintenance including DNA damage, aberrant chromosome condensation, and crossover defects in mouse spermatocytes and spontaneous genomic rearrangements in C. elegans. We show that GCNA and topoisomerase II (TOP2) physically interact in both mice and worms and colocalize on condensed chromosomes during mitosis in C. elegans embryos. Moreover, C. elegans gcna-1 mutants are hypersensitive to TOP2 poison. Together, our findings support a model in which GCNA provides genome maintenance functions in the germline and may do so, in part, by promoting the resolution of TOP2 DPCs.


Subject(s)
DNA Replication , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Genomic Instability , Mitosis , Nuclear Proteins/metabolism , Spermatocytes/cytology , Animals , Caenorhabditis elegans , DNA Damage , DNA Repair , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/genetics , Genome , Germ Cells , Male , Mice , Mice, Inbred C57BL , Mutation , Nuclear Proteins/genetics , Spermatocytes/metabolism , Spermatogenesis
17.
Reprod Biol Endocrinol ; 7: 122, 2009 Oct 29.
Article in English | MEDLINE | ID: mdl-19874624

ABSTRACT

BACKGROUND: The human endometrium is unique in its capacity to remodel constantly throughout adult reproductive life. Although the processes of tissue damage and breakdown in the endometrium have been well studied, little is known of how endometrial regeneration is achieved after menstruation. Nodal, a member of the transforming growth factor-beta superfamily, regulates the processes of pattern formation and differentiation that occur during early embryo development. METHODS: In this study, the expression of Nodal, Cripto (co-receptor) and Lefty A (antagonist) was examined by RT-PCR and immunohistochemistry across the menstrual cycle and in endometrial carcinomas. RESULTS: Nodal and Cripto were found to be expressed at high levels in both stromal and epithelial cells during the proliferative phase of the menstrual cycle. Although immunoreactivity for both proteins in surface and glandular epithelium was maintained at relatively steady-state levels across the cycle, their expression was significantly decreased within the stromal compartment by the mid-secretory phase. Lefty expression, as has previously been reported, was primarily restricted to glandular epithelium and surrounding stroma during the late secretory and menstrual phases. In line with recent studies that have shown that Nodal pathway activity is upregulated in many human cancers, we found that Nodal and Cripto immunoreactivity increased dramatically in the transition from histologic Grade 1 to histologic Grades 2 and 3 endometrial carcinomas. Strikingly, Lefty expression was low or absent in all cancer tissues. CONCLUSION: The expression of Nodal in normal and malignant endometrial cells that lack Lefty strongly supports an important role for this embryonic morphogen in the tissue remodelling events that occur across the menstrual cycle and in tumourogenesis.


Subject(s)
Carcinoma/genetics , Endometrial Neoplasms/genetics , Endometrium/metabolism , Menstrual Cycle/genetics , Nodal Protein/genetics , Adult , Body Fluids/metabolism , Carcinoma/metabolism , Endometrial Neoplasms/metabolism , Endometrium/physiology , Epidermal Growth Factor/genetics , Epidermal Growth Factor/metabolism , Female , GPI-Linked Proteins , Gene Expression Regulation, Neoplastic , Humans , Intercellular Signaling Peptides and Proteins , Left-Right Determination Factors/genetics , Left-Right Determination Factors/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Menstrual Cycle/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nodal Protein/metabolism , Nodal Protein/physiology , Signal Transduction/genetics , Uterus/metabolism
18.
G3 (Bethesda) ; 9(5): 1481-1486, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30837263

ABSTRACT

The introduction of foreign DNA into cells and organisms has facilitated much of modern biological research, and it promises to become equally important in clinical practice. Locating sites of foreign DNA incorporation in mammalian genomes has proven burdensome, so the genomic location of most transgenes remains unknown. To address this challenge, we applied nanopore sequencing in search of the site of integration of Tg(Pou5f1-EGFP)2Mnn (also known as Oct4:EGFP), a widely used fluorescent reporter in mouse germ line research. Using this nanopore-based approach, we identified the site of Oct4:EGFP transgene integration near the telomere of Chromosome 9. This methodology simultaneously yielded an estimate of transgene copy number, provided direct evidence of transgene inversions, revealed contaminating E. coli genomic DNA within the transgene array, validated the integrity of neighboring genes, and enabled definitive genotyping. We suggest that such an approach provides a rapid, cost-effective method for identifying and analyzing transgene integration sites.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutagenesis, Insertional , Transgenes , Animals , Base Sequence , Fibroblasts , Genes, Reporter , Germ Cells/metabolism , In Situ Hybridization, Fluorescence , Mice , Nanopores
19.
Biomolecules ; 9(12)2019 11 24.
Article in English | MEDLINE | ID: mdl-31771306

ABSTRACT

Retinoic acid (RA), a derivative of vitamin A, is critical for the production of oocytes and sperm in mammals. These gametes derive from primordial germ cells, which colonize the nascent gonad, and later undertake sexual differentiation to produce oocytes or sperm. During fetal development, germ cells in the ovary initiate meiosis in response to RA, whereas those in the testis do not yet initiate meiosis, as they are insulated from RA, and undergo cell cycle arrest. After birth, male germ cells resume proliferation and undergo a transition to spermatogonia, which are destined to develop into haploid spermatozoa via spermatogenesis. Recent findings indicate that RA levels change periodically in adult testes to direct not only meiotic initiation, but also other key developmental transitions to ensure that spermatogenesis is precisely organized for the prodigious output of sperm. This review focuses on how female and male germ cells develop in the ovary and testis, respectively, and the role of RA in this process.


Subject(s)
Oocytes/metabolism , Ovary/growth & development , Spermatozoa/metabolism , Testis/growth & development , Tretinoin/metabolism , Animals , Female , Gametogenesis , Humans , Male , Oocytes/cytology , Ovary/cytology , Ovary/metabolism , Spermatozoa/cytology , Testis/cytology , Testis/metabolism
20.
J Cell Biol ; 213(3): 315-28, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27138257

ABSTRACT

The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning.


Subject(s)
Cell Cycle Proteins/physiology , Microtubule-Associated Proteins/physiology , Microtubules/metabolism , Spindle Apparatus/metabolism , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Microtubules/ultrastructure , Models, Molecular , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/physiology , Spindle Apparatus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL