Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Nature ; 626(8000): 779-784, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383626

ABSTRACT

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

2.
Nature ; 626(7997): 79-85, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172640

ABSTRACT

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

3.
Proc Natl Acad Sci U S A ; 121(14): e2319663121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547059

ABSTRACT

The structure of dislocation cores, the fundamental knowledge on crystal plasticity, remains largely unexplored in covalent crystals. Here, we conducted atomically resolved characterizations of dislocation core structures in a plastically deformed diamond anvil cell tip that was unloaded from an exceptionally high pressure of 360 GPa. Our observations unveiled a series of nonequilibrium dislocation cores that deviate from the commonly accepted "five-seven-membered ring" dislocation core model found in FCC-structured covalent crystals. The nonequilibrium dislocation cores were generated through a process known as "mechanical quenching," analogous to the quenching process where a high-energy state is rapidly frozen. The density functional theory-based molecular dynamic simulations reveal that the phenomenon of mechanical quenching in diamond arises from the challenging relaxation of the nonequilibrium configuration, necessitating a large critical strain of 25% that is difficult to maintain. Further electronic-scale analysis suggested that such large critical strain is spent on the excitation of valance electrons for bond breaking and rebonding during relaxation. These findings establish a foundation for the plasticity theory of covalent materials and provide insights into the design of electrical and luminescent properties in diamond, which are intimately linked to the dislocation core structure.

4.
Nano Lett ; 24(17): 5301-5307, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38625005

ABSTRACT

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.


Subject(s)
Biomarkers , Biosensing Techniques , Chemokine CCL2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/urine , Diabetic Nephropathies/diagnosis , Biosensing Techniques/methods , Chemokine CCL2/urine , Biomarkers/urine , Limit of Detection , Electrochemical Techniques/methods
5.
Small ; : e2312175, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38534021

ABSTRACT

Ultrasensitive detection of biomarkers, particularly proteins, and microRNA, is critical for disease early diagnosis. Although surface plasmon resonance biosensors offer label-free, real-time detection, it is challenging to detect biomolecules at low concentrations that only induce a minor mass or refractive index change on the analyte molecules. Here an ultrasensitive plasmonic biosensor strategy is reported by utilizing the ferroelectric properties of Bi2O2Te as a sensitive-layer material. The polarization alteration of ferroelectric Bi2O2Te produces a significant plasmonic biosensing response, enabling the detection of charged biomolecules even at ultralow concentrations. An extraordinary ultralow detection limit of 1 fm is achieved for protein molecules and an unprecedented 0.1 fm for miRNA molecules, demonstrating exceptional specificity. The finding opens a promising avenue for the integration of 2D ferroelectric materials into plasmonic biosensors, with potential applications spanning a wide range.

6.
Nat Mater ; 22(9): 1078-1084, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37537352

ABSTRACT

Two-dimensional (2D) semiconductors are promising channel materials for next-generation field-effect transistors (FETs). However, it remains challenging to integrate ultrathin and uniform high-κ dielectrics on 2D semiconductors to fabricate FETs with large gate capacitance. We report a versatile two-step approach to integrating high-quality dielectric film with sub-1 nm equivalent oxide thickness (EOT) on 2D semiconductors. Inorganic molecular crystal Sb2O3 is homogeneously deposited on 2D semiconductors as a buffer layer, which forms a high-quality oxide-to-semiconductor interface and offers a highly hydrophilic surface, enabling the integration of high-κ dielectrics via atomic layer deposition. Using this approach, we can fabricate monolayer molybdenum disulfide-based FETs with the thinnest EOT (0.67 nm). The transistors exhibit an on/off ratio of over 106 using an ultra-low operating voltage of 0.4 V, achieving unprecedently high gating efficiency. Our results may pave the way for the application of 2D materials in low-power ultrascaling electronics.

7.
Nat Mater ; 22(11): 1317-1323, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735525

ABSTRACT

Materials that possess the ability to self-heal cracks at room temperature, akin to living organisms, are highly sought after. However, achieving crack self-healing in inorganic materials, particularly with covalent bonds, presents a great challenge and often necessitates high temperatures and considerable atomic diffusion. Here we conducted a quantitative evaluation of the room-temperature self-healing behaviour of a fractured nanotwinned diamond composite, revealing that the self-healing properties of the composite stem from both the formation of nanoscale diamond osteoblasts comprising sp2- and sp3-hybridized carbon atoms at the fractured surfaces, and the atomic interaction transition from repulsion to attraction when the two fractured surfaces come into close proximity. The self-healing process resulted in a remarkable recovery of approximately 34% in tensile strength for the nanotwinned diamond composite. This discovery sheds light on the self-healing capability of nanostructured diamond, offering valuable insights for future research endeavours aimed at enhancing the toughness and durability of brittle ceramic materials.

8.
Small ; 19(45): e2303026, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37394706

ABSTRACT

Plasmonic biosensing is a label-free detection method that is commonly used to measure various biomolecular interactions. However, one of the main challenges in this approach is the ability to detect biomolecules at low concentrations with sufficient sensitivity and detection limits. Here, 2D ferroelectric materials are employed to address the issues with sensitivity in biosensor design. A plasmonic sensor based on Bi2 O2 Se nanosheets, a ferroelectric 2D material, is presented for the ultrasensitive detection of the protein molecule. Through imaging the surface charge density of Bi2 O2 Se, a detection limit of 1 fM is achieved for bovine serum albumin (BSA). These findings underscore the potential of ferroelectric 2D materials as critical building blocks for future biosensor and biomaterial architectures.

9.
Small ; 19(29): e2300246, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37013460

ABSTRACT

2D materials with low symmetry are explored in recent years because of their anisotropic advantage in polarization-sensitive photodetection. Herein the controllably grown hexagonal magnetic semiconducting α-MnTe nanoribbons are reported with a highly anisotropic (100) surface and their high sensitivity to polarization in a broadband photodetection, whereas the hexagonal structure is highly symmetric. The outstanding photoresponse of α-MnTe nanoribbons occurs in a broadband range from ultraviolet (UV, 360 nm) to near infrared (NIR, 914 nm) with short response times of 46 ms (rise) and 37 ms (fall), excellent environmental stability, and repeatability. Furthermore, due to highly anisotropic (100) surface, the α-MnTe nanoribbons as photodetector exhibit attractive sensitivity to polarization and high dichroic ratios of up to 2.8 under light illumination of UV-to-NIR wavelengths. These results demonstrate that 2D magnetic semiconducting α-MnTe nanoribbons provide a promising platform to design the next-generation polarization-sensitive photodetectors in a broadband range.

10.
Angew Chem Int Ed Engl ; 61(35): e202206077, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35730919

ABSTRACT

Manipulating the catalyst-electrolyte interface to push reactants into the inner Helmholtz plane (IHP) is highly desirable for efficient electrocatalysts, however, it has rarely been implemented due to the elusive electrochemical IHP and inherent inert catalyst surface. Here, we propose the introduction of local force fields by the surface hydroxyl group to engineer the electrochemical microenvironment and enhance alkaline hydrogen evolution activity. Taking a hydroxyl group immobilized Ni/Ni3 C heterostructure as a prototype, we reveal that the local hydrogen bond induced by the surface hydroxyl group drags 4-coordinated hydrogen-bonded H2 O molecules across the IHP to become free H2 O and thus continuously supply reactants forcatalytic sites catalytic sites. In addition, the hydroxyl group coupled with the Ni/Ni3 C heterostructure further lowers the water dissociation energy by polarization effects. As a direct outcome, hydroxyl-rich catalysts surpass Pt/C activity at high current density (500 mA cm-2 @ ≈276 mV) in alkaline medium.

11.
Small ; 17(18): e2008078, 2021 May.
Article in English | MEDLINE | ID: mdl-33760364

ABSTRACT

2D ternary materials exhibit great promise in the field of polarization-sensitive photodetectors due to the low-symmetry crystal structure. However, the realization of ternary material growth is still a huge challenge because of the complex reaction process. Here, for the first time, 2D ternary In2 SnS4 flakes are obtained via synergistic additive of salt and molecular sieve-assisted chemical vapor deposition. Raman vibration mode of In2 SnS4 flakes exhibits polarization-dependent properties. The polarization-resolved absorption spectroscopy and azimuth-dependent reflectance difference microscopy further confirm its anisotropy of in-plane optical absorption and reflection. Besides, the In2 SnS4 flake based device on mica shows ultrafast rising and decay rates of ≈20 and 20 µs. Impressively, In2 SnS4 flake based phototransistor demonstrates giant gate-tunable polarization-sensitive photoresponse: the dichroic ratio can be adjusted in the range of 1.13-1.70 with gate voltage varying from -35-35 V. This work provides an effective means for modulating the polarization-sensitive photoresponse, which may significantly promote the research progress of polarization-sensitive photodetectors.

12.
Angew Chem Int Ed Engl ; 60(42): 22940-22947, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34387932

ABSTRACT

Bimetallic sulfides are expected to realize efficient CO2 electroreduction into formate over a wide potential window, however, they will undergo in situ structural evolution under the reaction conditions. Therefore, clarifying the structural evolution process, the real active site and the catalytic mechanism is significant. Here, taking Cu2 SnS3 as an example, we unveiled that Cu2 SnS3 occurred self-adapted phase separation toward forming the stable SnO2 @CuS and SnO2 @Cu2 O heterojunction during the electrochemical process. Calculations illustrated that the strongly coupled interfaces as real active sites driven the electron self-flow from Sn4+ to Cu+ , thereby promoting the delocalized Sn sites to combine HCOO* with H*. Cu2 SnS3 nanosheets achieve over 83.4 % formate selectivity in a wide potential range from -0.6 V to -1.1 V. Our findings provide insight into the structural evolution process and performance-enhanced origin of ternary sulfides under the CO2 electroreduction.

13.
Nanotechnology ; 31(9): 095703, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31711048

ABSTRACT

It involves invariably strong expectations and a tough challenge to explore lightweight microwave absorption materials with high efficiency and agile tenability. Here, we successfully synthesized CoFex@Co nanoparticles embedded into a carbon matrix that was directly derived from the metal organic frameworks (MOFs) via a facile method. Benefiting from the unique multi-dimensional construction and synergistic effects of carbon material with magnetic nanoparticles in both the electromagnetic energy loss and impedance matching, CoFe0.26@Co@C composite exhibited excellent microwave absorption performance, which showed a minimum reflection loss of -62.5 dB at the thickness of 1.5 mm and a broad absorption bandwidth of 14.7 GHz exceeding -10 dB at the thickness range of 1.4 to 5 mm. This study not only provides a reference for future preparation of MOF-based lightweight microwave absorption materials, but also offers the possible application owing to its simple procedure and outstanding absorption properties.

14.
Nano Lett ; 19(5): 3074-3082, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30951632

ABSTRACT

Battery materials, which store energy by combining mechanisms of intercalation, conversion, and alloying, provide promisingly high energy density but usually suffer from fast capacity decay due to the drastic volume change upon cycling. Particularly, the significant volume shrinkage upon mass (Li+, Na+, etc.) extraction inevitably leads to the formation of pores in materials and their final pulverization after cycling. It is necessary to explore the failure mechanism of such battery materials from the microscopic level in order to understand the evolution of porous structures. Here, prototyped Sb2Se3 nanowires are targeted to understand the structural failures during repetitive (de)sodiation, which exhibits mainly alloying and conversion mechanisms. The fast growing nanosized pores embedded in the nanowire during desodiation are identified to be the key factor that weakens the mechanical strength of the material and thus cause a rapid capacity decrease. To suppress the pore development, we further limit the cutoff charge voltage in a half-cell against Na below a critical value where the conversion reaction of such a material system is yet happening, the result of which demonstrates significantly improved battery performance with well-maintained structural integrity. These findings may shed some light on electrode failure investigation and rational design of advanced electrode materials with long cycling life.

15.
Nanotechnology ; 30(3): 035701, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30418944

ABSTRACT

Black phosphorus (BP) has recently drawn great attention in the field of electrocatalysis due to its distinct electrocatalytic activity for the oxygen evolution reaction (OER). However, the slow OER kinetics and the poor environmental stability of BP seriously limits its overall OER performance and prevents its electrocatalysis application. Here, sulfur (S)-doped BP nanosheets, which are prepared using high-pressure synthesis followed by liquid exfoliation, have been demonstrated to have much better OER electrocatalytic activity and environmental stability compared to their undoped counterparts. The S-doped BP nanosheets display a Tafel slope of 75 mV dec-1, which is a favorable value refered to the kinetics of OER in electrochemical tests. Notably, there is no degradation of S-doped BP nanosheets after six days exposure to ambient, indicating an excellent environmental stability of the S-doped BP. The density functional theory calculations show that the OER activity of BP originate from its crystal defects and heteroatom S doping can effectively enhance its OER activity and stability. These results highlight the doping effect on electrocatalytic activities and stability of BP and provide a simple and effective method to design highly efficient OER catalysts based on the modification of BP.

16.
Nanotechnology ; 30(34): 345203, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31108474

ABSTRACT

In two-dimensional layered materials, layer number and stacking order have strong effects on the optical and electronic properties. Tungsten disulfide (WS2) crystal, as one important member among transition metal dichalcogenides, has been usually prepared in a layered 2H prototype structure with space group P63/mmc ([Formula: see text]) in spite of many other expected ones such as 3R. Here, we report simultaneous growth of 2H and 3R stacked multilayer (ML) WS2 crystals in large scale by chemical vapor deposition and effects of layer number and stacking order on optical and electronic properties. As revealed in Raman and photoluminescence (PL) measurements, with an increase in layer number, 2H and 3R stacked ML WS2 crystals show similar variation of PL and Raman peaks in position and intensity. Compared to 2H stacked ML WS2, however, 3R stacked one always exhibits the larger red (blue) shift of Raman [Formula: see text] (A1g) peak and the appearance of PL A, B and I peaks at lower energies. Thereby, PL and Raman features depend on not only layer number but also stacking order. In addition, circularly polarized luminescence from two prototype WS2 crystals under circularly polarized excitation has also been investigated, showing obvious spin or valley polarization of these CVD-grown multilayer WS2 crystals.

17.
Nanotechnology ; 29(25): 255705, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29620537

ABSTRACT

Centimeter-scale continuous monolayer WS2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition, in which monolayer grains can be more than 200 µm in size. Monolayer WS2 grains are observed to merge together via not only traditional grain boundaries but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence and photoluminescence. This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved high resolution transmission electron microscopy and scanning transmission electron microscopy images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS2 for specific applications in (opto)electronics.

18.
Nanotechnology ; 29(40): 405703, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30010614

ABSTRACT

Nanostructure composites of ferromagnetic materials embedded in nanoporous carbon (NC) derived from metal-organic frameworks (MOFs) have attracted enormous attention due to their potential application in many fields, such as microwave absorption, energy storage, and conversion. The rational design of nanocomposites holds a determinant factor for overcoming the challenges involving the microwave absorption performance. Herein, CoS2/NC, CoP/NC, and CoS2-xPx/NC with a rhombic dodecahedral structure have been successfully fabricated by using the template cobalt-based MOFs (ZIF-67). A morphology analysis indicates that ferromagnetic nanoparticles are embedded in NC matrix. It is obvious that the rhombic dodecahedron can be maintained after the phosphorization and sulfurization of Co/NC derived from the thermal decomposition of ZIF-67. The microwave absorption performance can obviously be improved by the phosphorization and sulfurization of Co/NC. CoS2-xPx/NC exhibits an excellent microwave absorption property and the minimum reflection loss (RL) of CoS2-xPx/NC can reach -68 dB at 14.6 GHz with a thickness of 1.5 mm. An RL value less than -10 dB can be achieved in the microwave frequency range of 12.7-17.3 GHz (4.6 GHz) with a thickness of 1.5 mm for CoS2-xPx/NC. This article offers a novel way to fabricate cobalt-based materials/carbon composites for an excellent microwave absorber.

19.
Nano Lett ; 17(2): 1282-1288, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28036184

ABSTRACT

An in-depth understanding of (de)lithiation induced phase transition in electrode materials is crucial to grasp their structure-property relationships and provide guidance to the design of more desirable electrodes. By operando synchrotron XRD (SXRD) measurement and Density Functional Theory (DFT) based calculations, we discover a reversible first-order phase transition for the first time during (de)lithiation of CeO2 nanoparticles. The LixCeO2 compound phase is identified to possess the same fluorite crystal structure with FM3M space group as that of the pristine CeO2 nanoparticles. The SXRD determined lattice constant of the LixCeO2 compound phase is 0.551 nm, larger than that of 0.541 nm of the pristine CeO2 phase. The DFT calculations further reveal that the Li induced redistribution of electrons causes the increase in the Ce-O covalent bonding, the shuffling of Ce and O atoms, and the jump expansion of lattice constant, thereby resulting in the first-order phase transition. Discovering the new phase transition throws light upon the reaction between lithium and CeO2, and provides opportunities to the further investigation of properties and potential applications of LixCeO2.

20.
Nano Lett ; 17(4): 2165-2171, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28230376

ABSTRACT

Thermal runaways triggered by the oxygen release from oxide cathode materials pose a major safety concern for widespread application of lithium ion batteries. Utilizing in situ aberration-corrected scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) at high temperatures, we show that oxygen release from LixCoO2 cathode crystals is occurring at the surface of particles. We correlated this local oxygen evolution from the LixCoO2 structure with local phase transitions spanning from layered to spinel and then to rock salt structure upon exposure to elevated temperatures. Ab initio molecular dynamics simulations (AIMD) results show that oxygen release is highly dependent on LixCoO2 facet orientation. While the [001] facets are stable at 300 °C, oxygen release is observed from the [012] and [104] facets, where under-coordinated oxygen atoms from the delithiated structures can combine and eventually evolve as O2. The novel understanding that emerges from the present study provides in-depth insights into the thermal runaway mechanism of Li-ion batteries and can assist the design and fabrication of cathode crystals with the most thermally stable facets.

SELECTION OF CITATIONS
SEARCH DETAIL