Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cancer Immunol Immunother ; 68(5): 773-785, 2019 May.
Article in English | MEDLINE | ID: mdl-30747243

ABSTRACT

Adoptive cell therapy using autologous tumor-infiltrating lymphocytes (TIL) has shown significant clinical benefit, but is limited by toxicities due to a requirement for post-infusion interleukin-2 (IL-2), for which high dose is standard. To assess a modified TIL protocol using lower dose IL-2, we performed a single institution phase II protocol in unresectable, metastatic melanoma. The primary endpoint was response rate. Secondary endpoints were safety and assessment of immune correlates following TIL infusion. Twelve metastatic melanoma patients were treated with non-myeloablative lymphodepleting chemotherapy, TIL, and low-dose subcutaneous IL-2 (125,000 IU/kg/day, maximum 9-10 doses over 2 weeks). All but one patient had previously progressed after treatment with immune checkpoint inhibitors. No unexpected adverse events were observed, and patients received an average of 6.8 doses of IL-2. By RECIST v1.1, two patients experienced a partial response, one patient had an unconfirmed partial response, and six had stable disease. Biomarker assessment confirmed an increase in IL-15 levels following lymphodepleting chemotherapy as expected and a lack of peripheral regulatory T-cell expansion following protocol treatment. Interrogation of the TIL infusion product and monitoring of the peripheral blood following infusion suggested engraftment of TIL. In one responding patient, a population of T cells expressing a T-cell receptor Vß chain that was dominant in the infusion product was present at a high percentage in peripheral blood more than 2 years after TIL infusion. This study shows that this protocol of low-dose IL-2 following adoptive cell transfer of TIL is feasible and clinically active. (ClinicalTrials.gov identifier NCT01883323.).


Subject(s)
Immunotherapy, Adoptive/methods , Interleukin-2/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/therapy , Skin Neoplasms/therapy , Adult , Cell Proliferation , Cells, Cultured , Female , Humans , Interleukin-15/metabolism , Lymphocytes, Tumor-Infiltrating/transplantation , Male , Melanoma/immunology , Middle Aged , Neoplasm Metastasis , Skin Neoplasms/immunology , Treatment Outcome
2.
Prostate Cancer ; 2022: 6499344, 2022.
Article in English | MEDLINE | ID: mdl-35754788

ABSTRACT

Background: The evaluation of tumour-infiltrating lymphocytes (TILs) in solid malignancies has yielded insights into immune regulation within the tumour microenvironment and has also led to the development and optimisation of adoptive T cell therapies. Objectives: This study examined the in vitro expansion of TILs from prostate adenocarcinoma, as a preliminary step to evaluate the potential of TILs for adoptive T cell therapy. Design, Setting, and Participants. Malignant and adjacent nonmalignant tissues were obtained from fifteen men undergoing radical prostatectomy. Interventions. There were no study interventions. Outcome Measurements and Statistical Analysis. Expanded cells were analysed by flow cytometry, and the data was assessed for associations between cell subpopulations and expansion rate. Results: Tumour-infiltrating lymphocytes could be expanded to numbers that would be needed to generate a therapeutic infusion product from nine of 15 malignant specimens (60%). The CD4+ T cells predominated over CD8+ T cells (median 56.8% CD4+, 30.0% CD8+), and furthermore, faster TIL expansion was associated with a higher proportion of CD4+ T cells (median 69.8% in faster-growing cultures; 36.8% in slower-growing cultures). A higher proportion of CD3-CD56+ cells versus CD3+ cells was associated with slower TIL expansion in cultures from malignant specimens (median 13.3% in slower-growing cultures versus 2.05% in faster-growing cultures), but not from nonmalignant specimens. Conclusions: The expansion of TILs for potential therapeutic use is feasible. Our findings also indicate that further examination of TILs from prostate adenocarcinomas may yield insights into mechanisms of regulation of T cells within the tumour microenvironment. Further research is required to evaluate their therapeutic potential.

3.
Nat Med ; 23(3): 368-375, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28165478

ABSTRACT

Antitumor T cells are subject to multiple mechanisms of negative regulation. Recent findings that innate lymphoid cells (ILCs) regulate adaptive T cell responses led us to examine the regulatory potential of ILCs in the context of cancer. We identified a unique ILC population that inhibits tumor-infiltrating lymphocytes (TILs) from high-grade serous tumors, defined their suppressive capacity in vitro, and performed a comprehensive analysis of their phenotype. Notably, the presence of this CD56+CD3- population in TIL cultures was associated with reduced T cell numbers, and further functional studies demonstrated that this population suppressed TIL expansion and altered TIL cytokine production. Transcriptome analysis and phenotypic characterization determined that regulatory CD56+CD3- cells exhibit low cytotoxic activity, produce IL-22, and have an expression profile that overlaps with those of natural killer (NK) cells and other ILCs. NKp46 was highly expressed by these cells, and addition of anti-NKp46 antibodies to TIL cultures abrogated the ability of these regulatory ILCs to suppress T cell expansion. Notably, the presence of these regulatory ILCs in TIL cultures corresponded with a striking reduction in the time to disease recurrence. These studies demonstrate that a previously uncharacterized ILC population regulates the activity and expansion of tumor-associated T cells.


Subject(s)
Cytokines/immunology , Immunity, Innate/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes/immunology , Neoplasms/immunology , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , CD3 Complex/metabolism , CD56 Antigen/metabolism , Cell Proliferation , Flow Cytometry , Humans , Immune Tolerance , Immunotherapy , Interleukins/immunology , Killer Cells, Natural/immunology , Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Neoplasms/therapy , Interleukin-22
4.
PLoS One ; 5(11): e13940, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-21085676

ABSTRACT

BACKGROUND: Various immunotherapeutic strategies for cancer are aimed at augmenting the T cell response against tumor cells. Adoptive cell therapy (ACT), where T cells are manipulated ex vivo and subsequently re-infused in an autologous manner, has been performed using T cells from various sources. Some of the highest clinical response rates for metastatic melanoma have been reported in trials using tumor-infiltrating lymphocytes (TILs). These protocols still have room for improvement and furthermore are currently only performed at a limited number of institutions. The goal of this work was to develop TILs as a therapeutic product at our institution. PRINCIPAL FINDINGS: TILs from 40 melanoma tissue specimens were expanded and characterized. Under optimized culture conditions, 72% of specimens yielded rapidly proliferating TILs as defined as at least one culture reaching ≥3×10(7) TILs within 4 weeks. Flow cytometric analyses showed that cultures were predominantly CD3+ T cells, with highly variable CD4+:CD8+ T cell ratios. In total, 148 independent bulk TIL cultures were assayed for tumor reactivity. Thirty-four percent (50/148) exhibited tumor reactivity based on IFN-γ production and/or cytotoxic activity. Thirteen percent (19/148) showed specific cytotoxic activity but not IFN-γ production and only 1% (2/148) showed specific IFN-γ production but not cytotoxic activity. Further expansion of TILs using a 14-day "rapid expansion protocol" (REP) is required to induce a 500- to 2000-fold expansion of TILs in order to generate sufficient numbers of cells for current ACT protocols. Thirty-eight consecutive test REPs were performed with an average 1865-fold expansion (+/- 1034-fold) after 14 days. CONCLUSIONS: TILs generally expanded efficiently and tumor reactivity could be detected in vitro. These preclinical data from melanoma TILs lay the groundwork for clinical trials of ACT.


Subject(s)
Cell Proliferation , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma/pathology , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Cytotoxicity, Immunologic/immunology , Female , Flow Cytometry , Humans , Immunophenotyping , Immunotherapy, Adoptive/methods , Interferon-gamma/immunology , Interferon-gamma/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/transplantation , Male , Melanoma/immunology , Melanoma/therapy , Middle Aged , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL