Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Molecules ; 29(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39274968

ABSTRACT

The increasingly severe antibiotic pollution has become one of the most critical issues. In this study, a zinc peroxide/peroxymonosulfate (ZnO2/PMS) double-oxidation system was developed for tetracycline (TC) degradation. A small amount of ZnO2 (10 mg) and PMS (30 mg) could effectively degrade 82.8% of TC (100 mL, 50 mg/L), and the degradation process could be well described by the pseudo-second-order kinetic model. Meanwhile, the ZnO2/PMS double-oxidation system showed high adaptability in terms of reaction temperature (2-40 °C), initial pH value (4-12), common inorganic anions (Cl-, NO3-, SO42- and HCO3-), natural water source and organic pollutant type. The quenching experiment and electron paramagnetic resonance (EPR) characterization results confirmed that the main reactive oxygen species (ROS) was singlet oxygen (1O2). Moreover, three possible pathways of TC degradation were deduced according to the analyses of intermediates. On the basis of comparative characterization and experiment results, a synergistic activation mechanism was further proposed for the ZnO2/PMS double-oxidation system, accounting for the superior degradation performance. The released OH- and H2O2 from ZnO2 could activate PMS to produce major 1O2 and minor superoxide radicals (•O2-), respectively.


Subject(s)
Oxidation-Reduction , Peroxides , Tetracycline , Peroxides/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Zinc/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
2.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731547

ABSTRACT

In order to comprehensively utilize iron ore tailings (IOTs), the possibility of using IOTs as raw materials for the preparation of cementitious composites (IOTCCs) was investigated, and IOTCC was further applied to mine interface pollution control. The mechanical properties, hydration products, wind erosion resistance, and freeze-thaw (F-T) cycle resistance of IOTCCs were evaluated rigorously. The activity index of iron tailings increased from 42% to 78% after grinding for 20 s. The IOTCC was prepared by blending 86% IOT, 10% ground granulated blast-furnace slag (GGBS), and 4% cement clinker. Meanwhile, the hydration products mainly comprised ettringite, calcium hydroxide, and C-S-H gel, and they were characterized via XRD, IR, and SEM. It was observed that ettringite and C-S-H gel were principally responsible for the strength development of IOTCC mortars with an increase in curing time. The results show that the kaolinite of the tailings was decomposed largely after mechanical activation, which promoted the cementitious property of IOT.

3.
BMC Microbiol ; 23(1): 255, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704987

ABSTRACT

BACKGROUND: Rainbow trout (Oncorhynchus mykiss) is becoming popular with the increased demand for fish protein. However, the limited resources and expense of fish meal and oil have become restrictive factors for the development of the rainbow trout related industry. To solve this problem, plant-derived proteins and vegetable oils have been developed as alternative resources. The present study focuses on evaluating the effects of two experimental diets, FMR (fish meal replaced with plant-derived protein) and FOR (fish oil replaced with rapeseed oil), through the alteration of the gut microbiota in triploid rainbow trout. The commercial diet was used in the control group (FOM). RESULTS: Amplicon sequencing of the 16S and 18S rRNA genes was used to assess the changes in gut bacteria and fungi. Our analysis suggested that the α-diversity of both bacteria and fungi decreased significantly in the FMR and FOR groups, and ß-diversity was distinct between FOM/FMR and FOM/FOR based on principal coordinate analysis (PCoA). The abundance of the Planctomycetota phylum increased significantly in the FMR group, while that of Firmicutes and Bacteroidetes decreased. We also found that the fungal phylum Ascomycota was significantly increased in the FMR and FOR groups. At the genus level, we found that the abundance of Citrobacter was the lowest and that of pathogenic Schlesneria, Brevundimonas, and Mycoplasma was highest in the FMR and FOR groups. Meanwhile, the pathogenic fungal genera Verticillium and Aspergillus were highest in the FMR and FOR groups. Furthermore, canonical correspondence analysis (CCA) and network analysis suggested that the relatively low-abundance genera, including the beneficial bacteria Methylobacterium, Enterococcus, Clostridium, Exiguobacterium, Sphingomonas and Bacteroides and the fungi Papiliotrema, Preussia, and Stachybotrys, were positively correlated with plant protein or rapeseed oil. There were more modules that had the above beneficial genera as the hub nodes in the FMR and FOR groups. CONCLUSIONS: Our study suggested that the FMR and FOR diets could affect the gut microbiome in rainbow trout, which might offset the effects of the dominant and pathogenic microbial genera. This could be the underlying mechanism of explaining why no significant difference was observed in body weight between the different groups.


Subject(s)
Gastrointestinal Microbiome , Oncorhynchus mykiss , Animals , Rapeseed Oil , Body Weight , Bacteroides
4.
J Therm Biol ; 91: 102640, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32716881

ABSTRACT

The olive flounder, Paralichthys olivaceus, is a commercially important maricultured fish in China, Japan, and Korea. Low winter temperatures influence its survival and growth and affect the output of the aquaculture industry. Energy metabolism is essential for fish survival, and the central energy-regulating factor - 5'-AMP-activated protein kinase (AMPK) - plays an important role in responses to cold stress. However, the mechanism of AMPK pathway regulation in fish coping with cold stress remains poorly understood. In the present study, the expression of AMPK and its upstream (LKB1 and CaMKKß) and downstream genes (SITR1, FOXO1A, and TFAM) in the brain, muscle, and heart was analyzed while the flounder was under cold stress (0.2 ± 0.2 °C). The results showed that low temperatures activated LKB1, CaMKKß, and AMPK genes in the brain, and the activated AMPK induced expression of SITR1, FOXO1A, and TFAM. In the muscle tissue, the expression patterns of these genes presented a trend of initially decreasing and then increasing, and there was a delay in the response to low temperatures. At the cellular level, comparative analysis of the effects of the activator 5-aminoimidazole-4-carboxamide1-ß-D-ribofuranoside (AICAR) and inhibitor compound C of the AMPK pathway demonstrated that cold stress was similar to AICAR, which activated the AMPK pathway with hysteresis. Thus, the regulation mechanism of AMPK under cold stress was preliminarily analyzed. In general, AMPK was involved not only in responses to low temperatures but also in energy regulation under cold stress.


Subject(s)
Cold-Shock Response , Fish Proteins/metabolism , Flounder/metabolism , Protein Kinases/metabolism , Signal Transduction , AMP-Activated Protein Kinase Kinases , Animals , Cells, Cultured , Fish Proteins/genetics , Flounder/genetics , Muscle, Skeletal/metabolism , Protein Kinases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Fish Physiol Biochem ; 45(2): 583-597, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30790148

ABSTRACT

The aim of this study is to understand fish cold-tolerant mechanism. We analyzed the transcriptional reactions to the cold condition in turbot Scophthalmus maximus by using RNA-seq and microRNA (miRNA)-seq. Meio-gynogenetic diploid turbots were treated at 0 °C to distinguish the cold-tolerant (CT) and cold-sensitive (CS) groups. The results showed that there were quite different responses at both mRNA and miRNA levels, with more up-regulated mRNAs (1069 vs. 194) and less down-regulated miRNAs (4 vs. 1) in CT versus CS relative to the control group. The network of miRNA-transcription factor-mRNA, regulating turbot different response to cold stress, was constructed, which involved in cell cycle, component of cell membrane, signal transduction, and circadian rhythm pathways. The above information demonstrates mechanisms by which cold tolerance is increased in fish.


Subject(s)
Adaptation, Physiological , Cold Temperature , Flatfishes/physiology , MicroRNAs/metabolism , Transcription Factors/metabolism , Animals , Gene Expression Regulation/physiology , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics
6.
Cell Death Dis ; 15(9): 655, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242574

ABSTRACT

Studies have indicated that RAB17 expression levels are associated with tumor malignancy, and RAB17 is more highly expressed in endometrial cancer (EC) tissues than in peritumoral tissues. However, the roles and potential mechanisms of RAB17 in EC remain undefined. The present study confirmed that the expression of RAB17 facilitates EC progression by suppressing cellular ferroptosis-like alterations. Mechanistically, RAB17 attenuated ferroptosis in EC cells by inhibiting transferrin receptor (TFRC) protein expression in a ubiquitin proteasome-dependent manner. Because EC is a blood-deprived tumor with a poor energy supply, the relationship between RAB17 and hypoglycemia was investigated. RAB17 expression was increased in EC cells incubated in low-glucose medium. Moreover, low-glucose medium limited EC cell ferroptosis and promoted EC progression through the RAB17-TFRC axis. The in vitro results were corroborated by in vivo studies and clinical data. Overall, the present study revealed that increased RAB17 promotes the survival of EC cells during glucose deprivation by inhibiting the onset of TFRC-dependent ferroptosis.


Subject(s)
Disease Progression , Endometrial Neoplasms , Ferroptosis , Receptors, Transferrin , rab GTP-Binding Proteins , Animals , Female , Humans , Mice , Antigens, CD , Cell Line, Tumor , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/genetics , Ferroptosis/genetics , Glucose/metabolism , Mice, Nude , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics
7.
Front Microbiol ; 15: 1370334, 2024.
Article in English | MEDLINE | ID: mdl-38686112

ABSTRACT

Owning to their extreme environmental conditions, lakes on the Qinghai-Tibet Plateau have typically displayed a simplistic food web structure, rendering them more vulnerable to climate change compared to lakes in plains. Phytoplankton, undergoing a changing aquatic environment, play a crucial role in the material cycle and energy flow of the food chain, particularly important for the unique fish species of the Tibetan Plateau. To identify the changing environment indexes and determine the response of phytoplankton composition to the environment change in alpine lakes, three lakes-Lake Qinghai, Lake Keluke and Lake Tuosu-were selected as study areas. Seasonal sampling surveys were conducted in spring and summer annually from 2018 to 2020. Our findings revealed there were significant changes in physicochemical parameters and phytoplankton in the three lakes. Bacillariophyta was the predominant phytoplankton in Lake Qinghai from 2018 to 2020, with the genera Synedra sp., Navicula sp., Cymbella sp. and Achnanthidium sp. predominated alternately. Lake Keluke alternated between being dominated by Bacillariophyta and cyanobacteria during the same period. Dolichospermum sp., a cyanobacteria, was prevalent in the summer of 2018 and 2019 and in the spring of 2020. In Lake Tuosu, Bacillariophyta was the predominant phytoplankton from 2018 to 2020, except in the summer of 2019, which was dominated by cyanobacteria. Synedra sp., Oscillatoria sp., Pseudoanabaena sp., Chromulina sp. and Achnanthidium sp. appeared successively as the dominant genera. Analysis revealed that all three lakes exhibited higher phytoplankton abundance in 2018 that in 2019 and 2020. Concurrently, they experienced higher average temperatures in 2018 than in the subsequent years. The cyanobacteria, Bacillariophyta, Chlorophyta and overall phytoplankton increased with temperature and decreased with salinity and NH4-N. Besides, the ratios of cyanobacteria, and the ratios of Bacillariophyta accounted in total phytoplankton increased with temperature. These findings suggest that cyanobacteria and phytoplankton abundance, especially Bacillariophyta, may have an increase tendency in the three alpine lakes under warm and wet climate.

8.
Eur J Med Res ; 29(1): 431, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175075

ABSTRACT

INTRODUCTION: Accurate assessment of the depth of tumor invasion in gastric cancer (GC) is vital for the selection of suitable patients for neoadjuvant chemotherapy (NAC). Current problem is that preoperative differentiation between T1-2 and T3-4 stage cases in GC is always highly challenging for radiologists. METHODS: A total of 129 GC patients were divided into training (91 cases) and validation (38 cases) cohorts. Pathology from surgical specimens categorized patients into T1-2 and T3-4 stages. IVIM-DWI and MRI morphological characteristics were evaluated, and a multimodal nomogram was developed. The MRI morphological model, IVIM-DWI model, and combined model were constructed using logistic regression. Their effectiveness was assessed using receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC). RESULTS: The combined nomogram, integrating preoperative IVIM-DWI parameters (D value) and MRI morphological characteristics (maximum tumor thickness, extra-serosal invasion), achieved the highest area under the curve (AUC) values of 0.901 and 0.883 in the training and validation cohorts, respectively. No significant difference was observed between the AUCs of the IVIM-DWI and MRI morphological models in either cohort (training: 0.796 vs. 0.835, p = 0.593; validation: 0.794 vs. 0.766, p = 0.79). CONCLUSION: The multimodal nomogram, combining IVIM-DWI parameters and MRI morphological characteristics, emerges as a promising tool for assessing tumor invasion depth in GC, potentially guiding the selection of suitable candidates for neoadjuvant chemotherapy (NAC) treatment.


Subject(s)
Magnetic Resonance Imaging , Neoplasm Invasiveness , Nomograms , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/surgery , Female , Male , Magnetic Resonance Imaging/methods , Middle Aged , Aged , ROC Curve , Neoadjuvant Therapy/methods , Adult , Retrospective Studies , Neoplasm Staging/methods
9.
Article in English | MEDLINE | ID: mdl-36584834

ABSTRACT

Four new embryonic cell lines derived from blastocysts of the olive flounder Paralichthys olivaceus, an important commercial marine fish, were established and characterized. They were designated as PoEFCI, PoEFCII, PoEFCIII, and PoEFCIV and were all fibroblastic cells. The cells were cultured in DMEM/F-12 medium supplemented with antibiotics, FBS, and growth factors at temperature of 25 °C and subcultured for >100 passages over 18 months. The origin of the cell lines was confirmed by examining the partial sequences of the cytochrome oxidase c subunit I (COI) gene of the flounder mitochondrial DNA (mtDNA). The four cell lines showed different growth curve patterns. According to the results of gene and protein expression and enzyme activity, the cell lines PoEFCI, PoEFCII, and PoEFC III could be pluripotent. The cells of all four cell lines were also successfully transfected with the green fluorescent protein (GFP) reporter gene, suggesting that they could be used to study gene function in the flounder or other fish. More importantly, PoEFCI-III were sensitive to chromium (Cr) and red sea bream Pagrus major iridovirus (RSIV), so they could be used as a powerful tool for the study of the toxicological investigation of heavy metals and RSIV in fish. Therefore, these cell lines would be useful for biotechnological and toxicological research on marine fish as an in vitro biological system.


Subject(s)
Fish Diseases , Flounder , Animals , Flounder/genetics , Cell Line , Green Fluorescent Proteins/genetics , Genes, Reporter , Fish Diseases/genetics
10.
Front Neurosci ; 17: 1131114, 2023.
Article in English | MEDLINE | ID: mdl-36968506

ABSTRACT

Background: Chronic rhinosinusitis (CRS) poses a risk for developing emotional and cognitive disorders. However, the neural evidence for this association is largely unclear. Resting-state functional magnetic resonance imaging (rs-fMRI) analysis can demonstrate abnormal brain activity and functional connectivity and contribute to explaining the potential pathophysiology of CRS-related mood and cognitive alterations. Methods: Chronic rhinosinusitis patients (CRS, n = 26) and gender- and age-matched healthy control subjects (HCs, n = 38) underwent resting-state functional MRI scanning. The amplitude of low-frequency fluctuations (ALFF) was calculated to observe the intrinsic brain activity. The brain region with altered ALFF was further selected as the seed for functional connectivity (FC) analysis. Correlation analysis was performed between the ALFF/FC and clinical parameters in CRS patients. Results: Compared with HCs, CRS patients exhibited significantly increased ALFF in the left orbital superior frontal cortex and reduced connectivity in the right precuneus using the orbital superior frontal cortex as the seed region. The magnitude of the orbital superior frontal cortex increased with inflammation severity. In addition, ALFF values in the orbital superior frontal cortex were positively correlated with the hospital anxiety and depression scale (HADS) scores. The ROC curves of altered brain regions indicated great accuracy in distinguishing between CRS patients and HCs. Conclusion: In this study, patients with CRS showed increased neural activity in the orbital superior frontal cortex, a critical region in emotional regulation, and this region also indicated hypoconnectivity to the precuneus with a central role in modulating cognition. This study provided preliminary insights into the potential neural mechanism related to mood and cognitive dysfunctions in CRS patients.

11.
Front Genet ; 13: 903995, 2022.
Article in English | MEDLINE | ID: mdl-35937996

ABSTRACT

This study aimed to understand cold stress adaptations mechanism in fish. Thus, the transcriptional response to cold conditions in Gymnocypris eckloni was evaluated using RNA-seq and microRNA (miRNA)-seq analyses. Low-temperature (LT) group G. eckloni was cultivated outdoors in waters cooled to 2-4°C for 3 weeks, while individuals in the control temperature (CT) group were exposed to 14-16°C. Significantly different responses were observed in both mRNA and miRNA expression profiles, with more mRNAs (1,833 and 1,869 mRNAs were up- and downregulated, respectively) and fewer miRNAs (15 and 6 were up- and downregulated, respectively) observed in the LT group individuals relative to the CT group individuals. A miRNA-mRNA network involved in the regulation of G. eckloni responses to cold stress was constructed; this network included ubiquitin-mediated proteolysis, protein processing, and oxidative phosphorylation. These results provided new insights into mechanisms of cold tolerance by fish, including decreased metabolic activity in addition to proteolysis.

12.
Sci Data ; 9(1): 464, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918339

ABSTRACT

Gymnocypris eckloni is widely distributed in isolated lakes and the upper reaches of the Yellow River and play significant roles in the trophic web of freshwater communities. In this study, we generated a chromosome-level genome of G. eckloni using PacBio, Illumina and Hi-C sequencing data. The genome consists of 23 pseudo-chromosomes that contain 918.68 Mb of sequence, with a scaffold N50 length of 43.54 Mb. In total, 23,157 genes were annotated, representing 94.80% of the total predicted protein-coding genes. The phylogenetic analysis showed that G. eckloni was most closely related to C. carpio with an estimated divergence time of ~34.8 million years ago. For G. eckloni, we identified a high-quality genome at the chromosome level. This genome will serve as a valuable genomic resource for future research on the evolution and ecology of the schizothoracine fish in the Qinghai-Tibetan Plateau.


Subject(s)
Chromosomes , Cyprinidae , Genome , Animals , Chromosomes/genetics , Cyprinidae/genetics , Phylogeny , Sequence Analysis, DNA
13.
Curr Biol ; 32(20): 4337-4349.e5, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36055239

ABSTRACT

Symbiotic nitrogen fixation provides large amounts of nitrogen for global agricultural systems with little environmental or economic costs. The basis of symbiosis is the nutrient exchange occurring between legumes and rhizobia, but key regulators controlling nutrient exchange are largely unknown. Here, we reveal that magnesium (Mg), an important nutrient factor that preferentially accumulates in inner cortical cells of soybean nodules, shows the most positive correlation with nodule carbon (C) import and nitrogen (N) export. We further identified a pair of Mg transporter genes, GmMGT4 and GmMGT5, that are specifically expressed in the nodule cortex, modulating both nodule Mg import and C-N transport processes. The GmMGT4&5-dependent Mg import activates the activity of a plasmodesmata-located ß-1,3-glucanase GmBG2 and consequently keeps plasmodesmata permeable for C-N transport in nodule inner cortical cells. Our studies discovered an important regulating pathway for host plants fine-tuning nodule C-N trading to achieve optimal growth, which may be helpful for optimizing nutrient management for soybean production.


Subject(s)
Fabaceae , Symbiosis , Symbiosis/physiology , Root Nodules, Plant , Magnesium/metabolism , Nitrogen/metabolism , Carbon/metabolism , Nitrogen Fixation , Glycine max/genetics , Fabaceae/metabolism
14.
Sci Total Environ ; 715: 136940, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32014771

ABSTRACT

As global climate changes, mass mortality in farmed fish associated with the severely cold weather has aroused growing concerns. Yellow drum (Nibea albiflora) is an important maricultured fish in China, whereby its aquaculture suffered from overwinter mortality associated with cold and cold-induced-fasting stresses. Here, by using LC-MS metabolomics combined with transcriptomics, we investigated the physiological responses of yellow drum liver to cold and starvation stresses. The experiment involved four groups: 16 °C fed group (CG1), 16 °C unfed group (CG2), 8 °C fed group (EG1), and 8 °C unfed group (EG2). Under cold stress, a total of 308 and 257 differential metabolites were identified in EG1 vs. CG1 and EG2 vs. CG2, respectively, showing 5 overlapping significant pathways: glutathione metabolism, biosynthesis of unsaturated fatty acids, galactose metabolism, arginine and proline metabolism, and ABC transporters. Intersection analysis identified that glutamate, oxidized glutathione (GSSG), and eicosenoic acid were the common metabolites induced by cold stress. Under starvation stress, a total of 300 and 215 differential metabolites were identified in CG2 vs. CG1 and EG2 vs. EG1, respectively, showing 2 overlapping significant pathways: glutathione metabolism and galactose metabolism. Intersection analysis revealed that glutamate and GSSG were the common metabolites caused by fasting. Under cold and starvation combined stresses, 286 differential metabolites were identified in EG2 vs. CG1, showing 7 influenced pathways: glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids, glutathione metabolism, sphingolipid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, autophagy, and purine metabolism. Interestingly, the glutamate and GSSG were induced by both single and combined stresses of cold and starvation treatments. These findings suggest that glutathione metabolism and its related metabolites (glutamate and GSSG) could be potential biomarkers of cold and starvation stresses in yellow drum. Overall, the results of this study provided insights into the physiological regulation in response to cold and starvation stresses in this fish.


Subject(s)
Liver , Metabolomics , Animals , China , Chromatography, Liquid , Fishes , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL