Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38517698

ABSTRACT

The high-throughput genomic and proteomic scanning approaches allow investigators to measure the quantification of genome-wide genes (or gene products) for certain disease conditions, which plays an essential role in promoting the discovery of disease mechanisms. The high-throughput approaches often generate a large gene list of interest (GOIs), such as differentially expressed genes/proteins. However, researchers have to perform manual triage and validation to explore the most promising, biologically plausible linkages between the known disease genes and GOIs (disease signals) for further study. Here, to address this challenge, we proposed a network-based strategy DDK-Linker to facilitate the exploration of disease signals hidden in omics data by linking GOIs to disease knowns genes. Specifically, it reconstructed gene distances in the protein-protein interaction (PPI) network through six network methods (random walk with restart, Deepwalk, Node2Vec, LINE, HOPE, Laplacian) to discover disease signals in omics data that have shorter distances to disease genes. Furthermore, benefiting from the establishment of knowledge base we established, the abundant bioinformatics annotations were provided for each candidate disease signal. To assist in omics data interpretation and facilitate the usage, we have developed this strategy into an application that users can access through a website or download the R package. We believe DDK-Linker will accelerate the exploring of disease genes and drug targets in a variety of omics data, such as genomics, transcriptomics and proteomics data, and provide clues for complex disease mechanism and pharmacological research. DDK-Linker is freely accessible at http://ddklinker.ncpsb.org.cn/.


Subject(s)
Proteomics , Software , Proteomics/methods , Genomics/methods , Computational Biology/methods , Protein Interaction Maps
2.
Nucleic Acids Res ; 52(D1): D1110-D1120, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37904598

ABSTRACT

Traditional Chinese medicine (TCM) is increasingly recognized and utilized worldwide. However, the complex ingredients of TCM and their interactions with the human body make elucidating molecular mechanisms challenging, which greatly hinders the modernization of TCM. In 2016, we developed BATMAN-TCM 1.0, which is an integrated database of TCM ingredient-target protein interaction (TTI) for pharmacology research. Here, to address the growing need for a higher coverage TTI dataset, and using omics data to screen active TCM ingredients or herbs for complex disease treatment, we updated BATMAN-TCM to version 2.0 (http://bionet.ncpsb.org.cn/batman-tcm/). Using the same protocol as version 1.0, we collected 17 068 known TTIs by manual curation (with a 62.3-fold increase), and predicted ∼2.3 million high-confidence TTIs. In addition, we incorporated three new features into the updated version: (i) it enables simultaneous exploration of the target of TCM ingredient for pharmacology research and TCM ingredients binding to target proteins for drug discovery; (ii) it has significantly expanded TTI coverage; and (iii) the website was redesigned for better user experience and higher speed. We believe that BATMAN-TCM 2.0, as a discovery repository, will contribute to the study of TCM molecular mechanisms and the development of new drugs for complex diseases.


Subject(s)
Databases, Pharmaceutical , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Network Pharmacology , Humans , Drugs, Chinese Herbal/chemistry , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL