Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Proc Natl Acad Sci U S A ; 117(30): 17622-17626, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32661166

ABSTRACT

Technologies to fold structures into compact shapes are required in multiple engineering applications. Earwigs (Dermaptera) fold their fanlike hind wings in a unique, highly sophisticated manner, granting them the most compact wing storage among all insects. The structural and material composition, in-flight reinforcement mechanisms, and bistable property of earwig wings have been previously studied. However, the geometrical rules required to reproduce their complex crease patterns have remained uncertain. Here we show the method to design an earwig-inspired fan by considering the flat foldability in the origami model, as informed by X-ray microcomputed tomography imaging. As our dedicated designing software shows, the earwig fan can be customized into artificial deployable structures of different sizes and configurations for use in architecture, aerospace, mechanical engineering, and daily use items. Moreover, the proposed method is able to reconstruct the wing-folding mechanism of an ancient earwig relative, the 280-million-year-old Protelytron permianum This allows us to propose evolutionary patterns that explain how extant earwigs acquired their wing-folding mechanism and to project hypothetical, extinct transitional forms. Our findings can be used as the basic design guidelines in biomimetic research for harnessing the excellent engineering properties of earwig wings, and demonstrate how a geometrical designing method can reveal morphofunctional evolutionary constraints and predict plausible biological disparity in deep time.

2.
Soft Matter ; 18(41): 7990-7997, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36218365

ABSTRACT

Moving through soil is challenging for robots, particularly for soft robots. Herein, we propose a support structure, based on the hydrostatic skeleton of earthworms, to overcome this problem. To create extremely flexible, thin-walled, worm-sized deformed segments, a specialized 3D printer for low-hardness rubber was utilized. To obtain large radial deformation, we investigated the properties of the soft materials for 3D printing and the geometry of the segments. Notably, segments are deformed with multiply-wound shape memory alloy wires. We constructed an earthworm robot by connecting shape memory alloy-driven segments in series and experimentally demonstrated that this robot could propel in the soil. The proposed robot is unique in that it has a small diameter of 10 mm and exhibits a peristaltic motion in soil.

3.
Proc Natl Acad Sci U S A ; 114(22): 5624-5628, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28507159

ABSTRACT

Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: (i) the wing rigidity with relatively thick veins and (ii) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.


Subject(s)
Biomechanical Phenomena/physiology , Coleoptera/anatomy & histology , Wings, Animal/anatomy & histology , Wings, Animal/physiology , Animals , X-Ray Microtomography
4.
Front Robot AI ; 10: 1066518, 2023.
Article in English | MEDLINE | ID: mdl-37501743

ABSTRACT

A high degree of freedom (DOF) benefits manipulators by presenting various postures when reaching a target. Using a tendon-driven system with an underactuated structure can provide flexibility and weight reduction to such manipulators. The design and control of such a composite system are challenging owing to its complicated architecture and modeling difficulties. In our previous study, we developed a tendon-driven, high-DOF underactuated manipulator inspired from an ostrich neck referred to as the Robostrich arm. This study particularly focused on the control problems and simulation development of such a tendon-driven high-DOF underactuated manipulator. We proposed a curriculum-based reinforcement-learning approach. Inspired by human learning, progressing from simple to complex tasks, the Robostrich arm can obtain manipulation abilities by step-by-step reinforcement learning ranging from simple position control tasks to practical application tasks. In addition, an approach was developed to simulate tendon-driven manipulation with a complicated structure. The results show that the Robostrich arm can continuously reach various targets and simultaneously maintain its tip at the desired orientation while mounted on a mobile platform in the presence of perturbation. These results show that our system can achieve flexible manipulation ability even if vibrations are presented by locomotion.

5.
Front Robot AI ; 9: 895388, 2022.
Article in English | MEDLINE | ID: mdl-36119726

ABSTRACT

In robotics, soft continuum robot arms are a promising prospect owing to their redundancy and passivity; however, no comprehensive study exists that examines their characteristics compared to rigid manipulators. In this study, we examined the advantages of a continuum robot arm as compared to a typical and rigid seven-degree-of-freedom (7-DoF) robot manipulator in terms of performing various tasks through reinforcement learning. We conducted simulations for tasks with different characteristics that require control over position and force. Common tasks in robot manipulators, such as reaching, crank rotation, object throwing, and peg-in-hole were considered. The initial conditions of the robot and environment were randomized, aiming for evaluations including robustness. The results indicate that the continuum robot arm excels in the crank-rotation task, which is characterized by uncertainty in environmental conditions and cumulative rewards. However, the rigid robot arm learned better motions for the peg-in-hole task than the other tasks, which requires fine motion control of the end-effector. In the throwing task, the continuum robot arm scored well owing to its good handling of anisotropy. Moreover, we developed a reinforcement-learning method based on the comprehensive experimental results. The proposed method successfully improved the motion learning of a continuum robot arm by adding a technique to regulate the initial state of the robot. To the best of our knowledge, ours is the first reinforcement-learning experiment with multiple tasks on a single continuum robot arm and is the first report of a comparison between a single continuum robot arm and rigid manipulator on a wide range of tasks. This simulation study can make a significant contribution to the design of continuum arms and specification of their applications, and development of control and reinforcement learning methods.

6.
Front Robot AI ; 8: 720683, 2021.
Article in English | MEDLINE | ID: mdl-34504872

ABSTRACT

Inflatables are safe and lightweight structures even at the human scale. Inflatable robots are expected to be applied to physical human-robot interaction (pHRI). Although active joint mechanisms are essential for developing inflatable robots, the existing mechanisms are complex in structure and it is difficult to integrate actuators, which diminish the advantages of inflatables. This study proposes blower-powered soft inflatable joints that are easy to fabricate and contain enough space for an actuation inside. The joints are driven by tendon wires pulled by linear actuators. We derived a theoretical model for both unilateral and bilateral joints and demonstrated a hugging robot with multiple joints as an application of the proposed joint mechanism. The novelty of the proposed joint mechanism and the inflatable robot is that rigid parts have been thoroughly eliminated and the tendons for actuation have been successfully hidden inside. Moreover, the active control of the internal pressure makes inflatables resistant to punctures. We expect that the contact safety of inflatable robots will facilitate advancement of the pHRI field.

7.
Sci Rep ; 11(1): 18631, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650126

ABSTRACT

Insects have acquired various types of wings over their course of evolution and have become the most successful terrestrial animals. Consequently, the essence of their excellent environmental adaptability and locomotive ability should be clarified; a simple and versatile method to artificially reproduce the complex structure and various functions of these innumerable types of wings is necessary. This study presents a simple integral forming method for an insect-wing-type composite structure by 3D printing wing frames directly onto thin films. The artificial venation generation algorithm based on the centroidal Voronoi diagram, which can be observed in the wings of dragonflies, was used to design the complex mechanical properties of artificial wings. Furthermore, we implemented two representative functions found in actual insect wings: folding and coupling. The proposed crease pattern design software developed based on a beetle hindwing enables the 3D printing of foldable wings of any shape. In coupling-type wings, the forewing and hindwing are connected to form a single large wing during flight; these wings can be stored compactly by disconnecting and stacking them like cicada wings.

8.
Soft Robot ; 7(6): 700-710, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32223590

ABSTRACT

Wireless power transfer (WPT) has the significant potential for soft-bodied continuum robots to extend the operational time limitlessly and reduce weight. However, rigid power receiver coils, widely used in WPT, hinder the continuum deformation of the robot, and as a result, the function realization using the continuum deformation (e.g., locomotion) is impaired. Therefore, this article introduces that a soft-bodied continuum robot can be designed by using thin film receiver coils and an inductively coupled wireless powering solution without sacrificing the continuum deformation and locomotion ability. A system is described for powering and controlling a soft robotic caterpillar consisting of nothing more than its continuum structure, actuators, and thin/flexible power receiving coils.


Subject(s)
Lepidoptera , Robotic Surgical Procedures , Robotics , Animals , Locomotion , Shape Memory Alloys
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 4578-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737313

ABSTRACT

Recent studies have demonstrated that active gait training can recover voluntary locomotive ability of paralyzed rats. Rehabilitation devices used for studying spinal cord injury to date are usually fixed on a treadmill, but they have been used only slightly for active training. To process active rehabilitation, a wearable, lightweight device with adequate output is needed. Pouch motors, soft pneumatic actuators, are extremely light and have other benefits such as low cost, easy fabrication, and highly customizable design. They can be used to develop active gait rehabilitation devices. However, performance details of different motor designs have not been examined. As described herein, to build a wearable gait assistive device for rat study, we specifically examine how to design small pouch motors with a good contraction ratio and force output. Results show that pouch performance decreases dramatically with size, but better output is obtainable by separation into small 0.8 length-to-width ratio rooms. We used this knowledge to produce an assistive robot suit for gait rehabilitation and to test it with paralyzed rats. Results show that these small pouches can produce sufficient power to control hip joint movements during gait training. They can reveal the potential for new pouch motor applications for spinal cord injury studies.


Subject(s)
Gait , Animals , Exercise Test , Exercise Therapy , Rats , Self-Help Devices , Spinal Cord Injuries
SELECTION OF CITATIONS
SEARCH DETAIL