Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 160(1-2): 324-38, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25557080

ABSTRACT

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Models, Biological , Organ Culture Techniques , Organoids/pathology , Pancreatic Neoplasms/pathology , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Pancreas/metabolism , Pancreas/pathology
2.
Nat Immunol ; 14(8): 858-66, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23793062

ABSTRACT

Although T cell activation can result from signaling via T cell antigen receptor (TCR) alone, physiological T cell responses require costimulation via the coreceptor CD28. Through the use of an N-ethyl-N-nitrosourea-mutagenesis screen, we identified a mutation in Rltpr. We found that Rltpr was a lymphoid cell-specific, actin-uncapping protein essential for costimulation via CD28 and the development of regulatory T cells. Engagement of TCR-CD28 at the immunological synapse resulted in the colocalization of CD28 with both wild-type and mutant Rltpr proteins. However, the connection between CD28 and protein kinase C-θ and Carma1, two key effectors of CD28 costimulation, was abrogated in T cells expressing mutant Rltpr, and CD28 costimulation did not occur in those cells. Our findings provide a more complete model of CD28 costimulation in which Rltpr has a key role.


Subject(s)
CARD Signaling Adaptor Proteins/immunology , CD28 Antigens/immunology , Carrier Proteins/immunology , Guanylate Cyclase/immunology , Protein Kinase C/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/immunology , Amino Acid Sequence , Animals , Base Sequence , Carrier Proteins/genetics , Flow Cytometry , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins , Microscopy, Confocal , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Alignment , Sequence Analysis, DNA , Specific Pathogen-Free Organisms
3.
J Pathol ; 261(1): 19-27, 2023 09.
Article in English | MEDLINE | ID: mdl-37403270

ABSTRACT

Tumor budding (TB) is a strong biomarker of poor prognosis in colorectal cancer and other solid cancers. TB is defined as isolated single cancer cells or clusters of up to four cancer cells at the invasive tumor front. In areas with a large inflammatory response at the invasive front, single cells and cell clusters surrounding fragmented glands are observed appearing like TB. Occurrence of these small groups is referred to as pseudobudding (PsB), which arises due to external influences such as inflammation and glandular disruption. Using a combination of orthogonal approaches, we show that there are clear biological differences between TB and PsB. TB is representative of active invasion by presenting features of epithelial-mesenchymal transition and exhibiting increased deposition of extracellular matrix within the surrounding tumor microenvironment (TME), whereas PsB represents a reactive response to heavy inflammation where increased levels of granulocytes within the surrounding TME are observed. Our study provides evidence that areas with a strong inflammatory reaction should be avoided in the routine diagnostic assessment of TB. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms , Humans , Epithelial-Mesenchymal Transition , Inflammation , United Kingdom , Tumor Microenvironment
4.
Mol Ecol ; 31(16): 4364-4380, 2022 08.
Article in English | MEDLINE | ID: mdl-35751552

ABSTRACT

By their paternal transmission, Y-chromosomal haplotypes are sensitive markers of population history and male-mediated introgression. Previous studies identified biallelic single-nucleotide variants in the SRY, ZFY and DDX3Y genes, which in domestic goats identified four major Y-chromosomal haplotypes, Y1A, Y1B, Y2A and Y2B, with a marked geographical partitioning. Here, we extracted goat Y-chromosomal variants from whole-genome sequences of 386 domestic goats (75 breeds) and seven wild goat species, which were generated by the VarGoats goat genome project. Phylogenetic analyses indicated domestic haplogroups corresponding to Y1B, Y2A and Y2B, respectively, whereas Y1A is split into Y1AA and Y1AB. All five haplogroups were detected in 26 ancient DNA samples from southeast Europe or Asia. Haplotypes from present-day bezoars are not shared with domestic goats and are attached to deep nodes of the trees and networks. Haplogroup distributions for 186 domestic breeds indicate ancient paternal population bottlenecks and expansions during migrations into northern Europe, eastern and southern Asia, and Africa south of the Sahara. In addition, sharing of haplogroups indicates male-mediated introgressions, most notably an early gene flow from Asian goats into Madagascar and the crossbreeding that in the 19th century resulted in the popular Boer and Anglo-Nubian breeds. More recent introgressions are those from European goats into the native Korean goat population and from Boer goat into Uganda, Kenya, Tanzania, Malawi and Zimbabwe. This study illustrates the power of the Y-chromosomal variants for reconstructing the history of domestic species with a wide geographical range.


Subject(s)
DNA, Mitochondrial , Genetic Variation , Animals , DNA, Mitochondrial/genetics , Goats/genetics , Haplotypes/genetics , Phylogeny , Y Chromosome/genetics
5.
Nature ; 538(7624): 260-264, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27698416

ABSTRACT

The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.


Subject(s)
Adult Stem Cells/metabolism , Aging/genetics , Mutation Accumulation , Mutation Rate , Organ Specificity , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Colon/metabolism , DNA Mutational Analysis , Female , Genes, Neoplasm/genetics , Humans , Incidence , Intestine, Small/metabolism , Liver/metabolism , Male , Mice , Middle Aged , Multipotent Stem Cells/metabolism , Neoplasms/epidemiology , Neoplasms/genetics , Organoids/metabolism , Point Mutation/genetics , Young Adult
6.
J Med Genet ; 56(2): 75-80, 2019 02.
Article in English | MEDLINE | ID: mdl-30368457

ABSTRACT

BACKGROUND: Dravet syndrome is a severe genetic encephalopathy, caused by pathogenic variants in SCN1A. Low-grade parental mosaicism occurs in a substantial proportion of families (7%-13%) and has important implications for recurrence risks. However, parental mosaicism can remain undetected by methods regularly used in diagnostics. In this study, we use single-molecule molecular inversion probes (smMIP), a technique with high sensitivity for detecting low-grade mosaic variants and high cost-effectiveness, to investigate the incidence of parental mosaicism of SCN1A variants in a cohort of 90 families and assess the feasibility of this technique. METHODS: Deep sequencing of SCN1A was performed using smMIPs. False positive rates for each of the proband's pathogenic variants were determined in 145 unrelated samples. If parents showed corresponding variant alleles at a significantly higher rate than the established noise ratio, mosaicism was confirmed by droplet digital PCR (ddPCR). RESULTS: Sequence coverage of at least 100× at the location of the corresponding pathogenic variant was reached for 80 parent couples. The variant ratio was significantly higher than the established noise ratio in eight parent couples, of which four (5%) were regarded as true mosaics, based on ddPCR results. The false positive rate of smMIP analysis without ddPCR was therefore 50%. Three of these variants had previously been considered de novo in the proband by Sanger sequencing. CONCLUSION: smMIP technology combined withnext generation sequencing (NGS) performs better than Sanger sequencing in the detection of parental mosaicism. Because parental mosaicism has important implications for genetic counselling and recurrence risks, we stress the importance of implementing high-sensitivity NGS-based assays in standard diagnostics.


Subject(s)
Epilepsy/genetics , High-Throughput Nucleotide Sequencing/methods , Mosaicism , NAV1.1 Voltage-Gated Sodium Channel/genetics , Epilepsies, Myoclonic/genetics , Female , Humans , Male , Molecular Probes , Pedigree , Polymerase Chain Reaction/methods
7.
Hum Mutat ; 40(12): 2230-2238, 2019 12.
Article in English | MEDLINE | ID: mdl-31433103

ABSTRACT

Each year diagnostic laboratories in the Netherlands profile thousands of individuals for heritable disease using next-generation sequencing (NGS). This requires pathogenicity classification of millions of DNA variants on the standard 5-tier scale. To reduce time spent on data interpretation and increase data quality and reliability, the nine Dutch labs decided to publicly share their classifications. Variant classifications of nearly 100,000 unique variants were catalogued and compared in a centralized MOLGENIS database. Variants classified by more than one center were labeled as "consensus" when classifications agreed, and shared internationally with LOVD and ClinVar. When classifications opposed (LB/B vs. LP/P), they were labeled "conflicting", while other nonconsensus observations were labeled "no consensus". We assessed our classifications using the InterVar software to compare to ACMG 2015 guidelines, showing 99.7% overall consistency with only 0.3% discrepancies. Differences in classifications between Dutch labs or between Dutch labs and ACMG were mainly present in genes with low penetrance or for late onset disorders and highlight limitations of the current 5-tier classification system. The data sharing boosted the quality of DNA diagnostics in Dutch labs, an initiative we hope will be followed internationally. Recently, a positive match with a case from outside our consortium resulted in a more definite disease diagnosis.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Information Dissemination/methods , Data Accuracy , Databases, Genetic , Genetic Diseases, Inborn/genetics , Guidelines as Topic , Humans , Laboratories , Netherlands , Sequence Analysis, DNA
8.
Nature ; 496(7446): 494-7, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23594742

ABSTRACT

Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes, this number falls considerably short of the more than 22,000 mouse protein-coding genes. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning, insertional mutagenesis, antisense morpholino oligonucleotides, targeted re-sequencing, and zinc finger and TAL endonucleases have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis.


Subject(s)
Genome/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Alleles , Animals , Exome/genetics , Female , Gene Knockout Techniques , Genetic Complementation Test , Genomics , Male , Molecular Sequence Annotation , Mutagenesis , Mutation/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Zebrafish/physiology , Zebrafish Proteins/metabolism
9.
J Biol Chem ; 292(19): 7904-7920, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28302725

ABSTRACT

Infantile-onset inflammatory bowel disease (IO IBD) is an invalidating illness with an onset before 2 years of age and has a complex pathophysiology in which genetic factors are important. Homozygosity mapping and whole-exome sequencing in an IO IBD patient and subsequent sequencing of the candidate gene in 12 additional IO IBD patients revealed two patients with two mutated ankyrin repeat and zinc-finger domain-containing 1 (ANKZF1) alleles (homozygous ANKZF1 R585Q mutation and compound heterozygous ANKZF1 E152K and V32_Q87del mutations, respectively) and two patients with one mutated ANKZF1 allele. Although the function of ANKZF1 in mammals had not been previously evaluated, we show that ANKZF1 has an indispensable role in the mitochondrial response to cellular stress. ANKZF1 is located diffusely in the cytoplasm and translocates to the mitochondria upon cellular stress. ANKZF1 depletion reduces mitochondrial integrity and mitochondrial respiration under conditions of cellular stress. The ANKZF1 mutations identified in IO IBD patients with two mutated ANKZF1 alleles result in dysfunctional ANKZF1, as shown by an increased level of apoptosis in patients' lymphocytes, a decrease in mitochondrial respiration in patient fibroblasts with a homozygous ANKZF1 R585Q mutation, and an inability of ANKZF1 R585Q and E152K to rescue the phenotype of yeast deficient in Vms1, the yeast homologue of ANKZF1. These data indicate that loss-of-function mutations in ANKZF1 result in deregulation of mitochondrial integrity, and this may play a pathogenic role in the development of IO IBD.


Subject(s)
Ankyrin Repeat/genetics , Carrier Proteins/genetics , Inflammatory Bowel Diseases/genetics , Zinc Fingers , Age of Onset , Alleles , Apoptosis , Carrier Proteins/metabolism , Cell Line, Tumor , Child, Preschool , Exome , Female , Fibroblasts/metabolism , Genome, Human , HEK293 Cells , Homozygote , Humans , Infant , Inflammation , Inflammatory Bowel Diseases/metabolism , Lymphocytes/cytology , Male , Mitochondria/metabolism , Mutation , Phenotype , RNA, Small Interfering/metabolism , Sequence Analysis, DNA , Zinc/chemistry
10.
Hum Mol Genet ; 25(11): 2158-2167, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27005418

ABSTRACT

We identified de novo nonsense variants in KIDINS220/ARMS in three unrelated patients with spastic paraplegia, intellectual disability, nystagmus, and obesity (SINO). KIDINS220 is an essential scaffold protein coordinating neurotrophin signal pathways in neurites and is spatially and temporally regulated in the brain. Molecular analysis of patients' variants confirmed expression and translation of truncated transcripts similar to recently characterized alternative terminal exon splice isoforms of KIDINS220 KIDINS220 undergoes extensive alternative splicing in specific neuronal populations and developmental time points, reflecting its complex role in neuronal maturation. In mice and humans, KIDINS220 is alternative spliced in the middle region as well as in the last exon. These full-length and KIDINS220 splice variants occur at precise moments in cortical, hippocampal, and motor neuron development, with splice variants similar to the variants seen in our patients and lacking the last exon of KIDINS220 occurring in adult rather than in embryonic brain. We conducted tissue-specific expression studies in zebrafish that resulted in spasms, confirming a functional link with disruption of the KIDINS220 levels in developing neurites. This work reveals a crucial physiological role of KIDINS220 in development and provides insight into how perturbation of the complex interplay of KIDINS220 isoforms and their relative expression can affect neuron control and human metabolism. Altogether, we here show that de novo protein-truncating KIDINS220 variants cause a new syndrome, SINO. This is the first report of KIDINS220 variants causing a human disease.


Subject(s)
Intellectual Disability/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Nystagmus, Congenital/genetics , Obesity/genetics , Paraplegia/genetics , Zebrafish Proteins/genetics , Alternative Splicing/genetics , Animals , Codon, Nonsense , Disease Models, Animal , Humans , Intellectual Disability/physiopathology , Neurites/metabolism , Neurites/pathology , Neurogenesis/genetics , Neurons/metabolism , Neurons/pathology , Nystagmus, Congenital/physiopathology , Obesity/pathology , PC12 Cells , Paraplegia/physiopathology , Protein Binding/genetics , Rats , Signal Transduction
11.
Am J Hum Genet ; 97(4): 621-6, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26387593

ABSTRACT

Tooth agenesis is one of the most common developmental anomalies in man. Oligodontia, a severe form of tooth agenesis, occurs both as an isolated anomaly and as a syndromal feature. We performed exome sequencing on 20 unrelated individuals with apparent non-syndromic oligodontia and failed to detect mutations in genes previously associated with oligodontia. In three of the probands, we detected heterozygous variants in LRP6, and sequencing of additional oligodontia-affected individuals yielded one additional mutation in LRP6. Three mutations (c.1144_1145dupAG [p.Ala383Glyfs(∗)8], c.1779dupT [p.Glu594(∗)], and c.2224_2225dupTT [p.Leu742Phefs(∗)7]) are predicted to truncate the protein, whereas the fourth (c.56C>T [p.Ala19Val]) is a missense variant of a conserved residue located at the cleavage site of the protein's signal peptide. All four affected individuals harboring a LRP6 mutation had a family history of tooth agenesis. LRP6 encodes a transmembrane cell-surface protein that functions as a co-receptor with members from the Frizzled protein family in the canonical Wnt/ß-catenin signaling cascade. In this same pathway, WNT10A was recently identified as a major contributor in the etiology of non-syndromic oligodontia. We show that the LRP6 missense variant (c.56C>T) results in altered glycosylation and improper subcellular localization of the protein, resulting in abrogated activation of the Wnt pathway. Our results identify LRP6 variants as contributing to the etiology of non-syndromic autosomal-dominant oligodontia and suggest that this gene is a candidate for screening in DNA diagnostics.


Subject(s)
Anodontia/genetics , Exome/genetics , Genes, Dominant , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mutation/genetics , Wnt Proteins/genetics , Anodontia/pathology , Case-Control Studies , Female , HEK293 Cells , Humans , Male , Pedigree , Phenotype
12.
Epilepsia ; 59(3): 690-703, 2018 03.
Article in English | MEDLINE | ID: mdl-29460957

ABSTRACT

OBJECTIVE: Phenotypes caused by de novo SCN1A pathogenic variants are very variable, ranging from severely affected patients with Dravet syndrome to much milder genetic epilepsy febrile seizures plus cases. The most important determinant of disease severity is the type of variant, with variants that cause a complete loss of function of the SCN1A protein (α-subunit of the neuronal sodium channel Nav1.1) being detected almost exclusively in Dravet syndrome patients. However, even within Dravet syndrome disease severity ranges greatly, and consequently other disease modifiers must exist. A better prediction of disease severity is very much needed in daily practice to improve counseling, stressing the importance of identifying modifying factors in this patient group. We evaluated 128 participants with de novo, pathogenic SCN1A variants to investigate whether mosaicism, caused by postzygotic mutation, is a major modifier in SCN1A-related epilepsy. METHODS: Mosaicism was investigated by reanalysis of the pathogenic SCN1A variants using single molecule molecular inversion probes and next generation sequencing with high coverage. Allelic ratios of pathogenic variants were used to determine whether mosaicism was likely. Selected mosaic variants were confirmed by droplet digital polymerase chain reaction and sequencing of different tissues. Developmental outcome was classified based on available data on intelligence quotient and school functioning/education. RESULTS: Mosaicism was present for 7.5% of de novo pathogenic SCN1A variants in symptomatic patients. Mosaic participants were less severely affected than nonmosaic participants if only participants with truncating variants are considered (distribution of developmental outcome scores, Mann-Whitney U, P = .023). SIGNIFICANCE: Postzygotic mutation is a common phenomenon in SCN1A-related epilepsies. Participants with mosaicism have on average milder phenotypes, suggesting that mosaicism can be a major modifier of SCN1A-related diseases. Detection of mosaicism has important implications for genetic counseling and can be achieved by deep sequencing of unique reads.


Subject(s)
Epilepsy/diagnosis , Epilepsy/genetics , Genetic Variation/genetics , Mosaicism , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/genetics , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult
13.
Genome Res ; 24(2): 200-11, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24221193

ABSTRACT

Intra-tumor heterogeneity is a hallmark of many cancers and may lead to therapy resistance or interfere with personalized treatment strategies. Here, we combined topographic mapping of somatic breakpoints and transcriptional profiling to probe intra-tumor heterogeneity of treatment-naïve stage IIIC/IV epithelial ovarian cancer. We observed that most substantial differences in genomic rearrangement landscapes occurred between metastases in the omentum and peritoneum versus tumor sites in the ovaries. Several cancer genes such as NF1, CDKN2A, and FANCD2 were affected by lesion-specific breakpoints. Furthermore, the intra-tumor variability involved different mutational hallmarks including lesion-specific kataegis (local mutation shower coinciding with genomic breakpoints), rearrangement classes, and coding mutations. In one extreme case, we identified two independent TP53 mutations in ovary tumors and omentum/peritoneum metastases, respectively. Examination of gene expression dynamics revealed up-regulation of key cancer pathways including WNT, integrin, chemokine, and Hedgehog signaling in only subsets of tumor samples from the same patient. Finally, we took advantage of the multilevel tumor analysis to understand the effects of genomic breakpoints on qualitative and quantitative gene expression changes. We show that intra-tumor gene expression differences are caused by site-specific genomic alterations, including formation of in-frame fusion genes. These data highlight the plasticity of ovarian cancer genomes, which may contribute to their strong capacity to adapt to changing environmental conditions and give rise to the high rate of recurrent disease following standard treatment regimes.


Subject(s)
Chromosome Aberrations , Gene Expression Regulation, Neoplastic , Genome, Human , Ovarian Neoplasms/genetics , Aged , Cyclin-Dependent Kinase Inhibitor p16/genetics , Fanconi Anemia Complementation Group D2 Protein/genetics , Female , Gene Expression Profiling , Humans , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Neurofibromatosis 1/genetics , Omentum/metabolism , Omentum/pathology , Oncogene Proteins, Fusion/genetics , Ovarian Neoplasms/pathology , Peritoneum/metabolism , Peritoneum/pathology , Tumor Suppressor Protein p53/genetics
14.
BMC Genomics ; 17(1): 839, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27793082

ABSTRACT

BACKGROUND: Inbreeding and population bottlenecks in the ancestry of Friesian horses has led to health issues such as dwarfism. The limbs of dwarfs are short and the ribs are protruding inwards at the costochondral junction, while the head and back appear normal. A striking feature of the condition is the flexor tendon laxity that leads to hyperextension of the fetlock joints. The growth plates of dwarfs display disorganized and thickened chondrocyte columns. The aim of this study was to identify the gene defect that causes the recessively inherited trait in Friesian horses to understand the disease process at the molecular level. RESULTS: We have localized the genetic cause of the dwarfism phenotype by a genome wide approach to a 3 Mb region on the p-arm of equine chromosome 14. The DNA of two dwarfs and one control Friesian horse was sequenced completely and we identified the missense mutation ECA14:g.4535550C > T that cosegregated with the phenotype in all Friesians analyzed. The mutation leads to the amino acid substitution p.(Arg17Lys) of xylosylprotein beta 1,4-galactosyltransferase 7 encoded by B4GALT7. The protein is one of the enzymes that synthesize the tetrasaccharide linker between protein and glycosaminoglycan moieties of proteoglycans of the extracellular matrix. The mutation not only affects a conserved arginine codon but also the last nucleotide of the first exon of the gene and we show that it impedes splicing of the primary transcript in cultured fibroblasts from a heterozygous horse. As a result, the level of B4GALT7 mRNA in fibroblasts from a dwarf is only 2 % compared to normal levels. Mutations in B4GALT7 in humans are associated with Ehlers-Danlos syndrome progeroid type 1 and Larsen of Reunion Island syndrome. Growth retardation and ligamentous laxity are common manifestations of these syndromes. CONCLUSIONS: We suggest that the identified mutation of equine B4GALT7 leads to the typical dwarfism phenotype in Friesian horses due to deficient splicing of transcripts of the gene. The mutated gene implicates the extracellular matrix in the regular organization of chrondrocyte columns of the growth plate. Conservation of individual amino acids may not be necessary at the protein level but instead may reflect underlying conservation of nucleotide sequence that are required for efficient splicing.


Subject(s)
Dwarfism/veterinary , Galactosyltransferases/genetics , Horse Diseases/genetics , Joint Instability/genetics , Mutation , RNA Splice Sites , Amino Acid Sequence , Animals , Chromosome Mapping , Female , Genetic Association Studies , Horses , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
15.
Kidney Int ; 89(2): 476-86, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26489027

ABSTRACT

The leading cause of end-stage renal disease in children is attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Familial clustering and mouse models support the presence of monogenic causes. Genetic testing is insufficient as it mainly focuses on HNF1B and PAX2 mutations that are thought to explain CAKUT in 5­15% of patients. To identify novel, potentially pathogenic variants in additional genes, we designed a panel of genes identified from studies on familial forms of isolated or syndromic CAKUT and genes suggested by in vitro and in vivo CAKUT models. The coding exons of 208 genes were analyzed in 453 patients with CAKUT using next-generation sequencing. Rare truncating, splice-site variants, and non-synonymous variants, predicted to be deleterious and conserved, were prioritized as the most promising variants to have an effect on CAKUT. Previously reported disease-causing mutations were detected, but only five were fully penetrant causal mutations that improved diagnosis. We prioritized 148 candidate variants in 151 patients, found in 82 genes, for follow-up studies. Using a burden test, no significant excess of rare variants in any of the genes in our cohort compared with controls was found. Thus, in a study representing the largest set of genes analyzed in CAKUT patients to date, the contribution of previously implicated genes to CAKUT risk was significantly smaller than expected, and the disease may be more complex than previously assumed.


Subject(s)
Urogenital Abnormalities/genetics , Exons , Gene Deletion , Humans , Sequence Analysis, DNA
16.
Bioinformatics ; 31(12): 2032-4, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25697820

ABSTRACT

UNLABELLED: Sambamba is a high-performance robust tool and library for working with SAM, BAM and CRAM sequence alignment files; the most common file formats for aligned next generation sequencing data. Sambamba is a faster alternative to samtools that exploits multi-core processing and dramatically reduces processing time. Sambamba is being adopted at sequencing centers, not only because of its speed, but also because of additional functionality, including coverage analysis and powerful filtering capability. AVAILABILITY AND IMPLEMENTATION: Sambamba is free and open source software, available under a GPLv2 license. Sambamba can be downloaded and installed from http://www.open-bio.org/wiki/Sambamba.Sambamba v0.5.0 was released with doi:10.5281/zenodo.13200.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Software , Algorithms , Genomics , Humans , Sequence Alignment
17.
Genet Med ; 18(9): 949-56, 2016 09.
Article in English | MEDLINE | ID: mdl-26845106

ABSTRACT

PURPOSE: This study investigated whole-exome sequencing (WES) yield in a subset of intellectually disabled patients referred to our clinical diagnostic center and calculated the total costs of these patients' diagnostic trajectory in order to evaluate early WES implementation. METHODS: We compared 17 patients' trio-WES yield with the retrospective costs of diagnostic procedures by comprehensively examining patient records and collecting resource use information for each patient, beginning with patient admittance and concluding with WES initiation. We calculated cost savings using scenario analyses to evaluate the costs replaced by WES when used as a first diagnostic tool. RESULTS: WES resulted in diagnostically useful outcomes in 29.4% of patients. The entire traditional diagnostic trajectory average cost was $16,409 per patient, substantially higher than the $3,972 trio-WES cost. WES resulted in average cost savings of $3,547 for genetic and metabolic investigations in diagnosed patients and $1,727 for genetic investigations in undiagnosed patients. CONCLUSION: The increased causal variant detection yield by WES and the relatively high costs of the entire traditional diagnostic trajectory suggest that early implementation of WES is a relevant and cost-efficient option in patient diagnostics. This information is crucial for centers considering implementation of WES and serves as input for future value-based research into diagnostics.Genet Med 18 9, 949-956.


Subject(s)
Exome Sequencing/methods , Genetic Testing/economics , High-Throughput Nucleotide Sequencing , Intellectual Disability/diagnosis , Costs and Cost Analysis , Exome , Female , Humans , Intellectual Disability/economics , Intellectual Disability/genetics , Male , Sequence Analysis, DNA , Exome Sequencing/economics
18.
Am J Med Genet A ; 170(6): 1566-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26892345

ABSTRACT

We report an 11-year-old girl with mild intellectual disability, skeletal anomalies, congenital heart defect, myopia, and facial dysmorphisms including an extra incisor, cup-shaped ears, and a preauricular skin tag. Array comparative genomic hybridization analysis identified a de novo 4.5-Mb microdeletion on chromosome 14q24.2q24.3. The deleted region and phenotype partially overlap with previously reported patients. Here, we provide an overview of the literature on 14q24 microdeletions and further delineate the associated phenotype. We performed exome sequencing to examine other causes for the phenotype and queried genes present in the 14q24.2q24.3 microdeletion that are associated with recessive disease for variants in the non-deleted allele. The deleted region contains 65 protein-coding genes, including the ciliary gene IFT43. Although Sanger and exome sequencing did not identify variants in the second IFT43 allele or in other IFT complex A-protein-encoding genes, immunocytochemistry showed increased accumulation of IFT-B proteins at the ciliary tip in patient-derived fibroblasts compared to control cells, demonstrating defective retrograde ciliary transport. This could suggest a ciliary defect in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carrier Proteins/genetics , Chromosome Deletion , Chromosomes, Human, Pair 14 , Heart Defects, Congenital/genetics , Intellectual Disability/genetics , Myopia/genetics , Phenotype , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Child , Comparative Genomic Hybridization , Exome , Female , Fibroblasts/metabolism , Gene Expression , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans
19.
Med Mol Morphol ; 49(2): 110-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26700225

ABSTRACT

Homeostasis of the continuously self-renewing intestinal tract involves cell proliferation, migration, differentiation along the crypt-villus-axis and shedding of cells into the gut lumen. CD95-ligand (FAS-ligand, CD95L) is a cytokine that is known for its capacity to induce apoptosis by binding its cognate receptor, CD95 (Fas). More recently, it was discovered that CD95L can also induce other cellular responses, such as proliferation, differentiation and cell migration. CD95L is highly expressed in Paneth cells of the small intestine which are in close contact with intestinal stem cells. This suggests a potential role for CD95L in controlling stem cell function and, possibly, intestinal homeostasis. We analyzed the intestines of mice deficient for functional CD95L (gld) for potential alterations in the diversity of stem-cell-lineages and parameters of intestinal homeostasis. Stem cell diversity was assessed by analyzing methylation patterns of the non-transcribed mMYOD gene. Proliferation was analyzed by BrdU labeling and differentiation was assessed by immunohistochemistry. Of all parameters analyzed, only epithelial cell proliferation was significantly reduced in the small intestines of gld-mice, but not in their colons which lack CD95L expression. We conclude that CD95L has a proliferation-stimulating role during normal turnover of the small intestine, but has a marginal effect on overall intestinal homeostasis.


Subject(s)
Fas Ligand Protein/metabolism , Homeostasis , Intestinal Mucosa/cytology , Animals , Cell Differentiation , Cell Proliferation , Intestinal Mucosa/metabolism , Intestine, Small/cytology , Intestine, Small/metabolism , Mice , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism , fas Receptor/metabolism
20.
BMC Genomics ; 16: 761, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26452345

ABSTRACT

BACKGROUND: Hydrocephalus in Friesian horses is a developmental disorder that often results in stillbirth of affected foals and dystocia in dams. The occurrence is probably related to a founder effect and inbreeding in the population. The aim of our study was to find genomic associations, to investigate the mode of inheritance, to allow a DNA test for hydrocephalus in Friesian horses to be developed. In case of a monogenic inheritance we aimed to identify the causal mutation. RESULTS: A genome-wide association study of hydrocephalus in 13 cases and 69 controls using 29,720 SNPs indicated the involvement of a region on ECA1 (P <1.68 × 10(-6)). Next generation DNA sequence analysis of 4 cases and 6 controls of gene exons within the region revealed a mutation in ß-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2) as the likely cause of hydrocephalus in Friesian horses. The nonsense mutation XM_001491545 c.1423C>T corresponding to XP_001491595 p.Gln475* was identical to a B3GALNT2 mutation identified in a human case of muscular dystrophy-dystroglycanopathy with hydrocephalus. All 16 available cases and none of the controls were homozygous for the mutation, and all 17 obligate carriers (= dams of cases) were heterozygous. A random sample of the Friesian horse population (n = 865) was tested for the mutation in a commercial laboratory. One-hundred and forty-seven horses were carrier and 718 horses were homozygous for the normal allele; the estimated allele frequency in the Friesian horse population is 0.085. CONCLUSIONS: Hydrocephalus in Friesian horses has an autosomal recessive mode of inheritance. A nonsense mutation XM_001491545 c.1423C>T corresponding to XP_001491595 p.Gln475* in B3GALNT2 (1:75,859,296-75,909,376) is concordant with hydrocephalus in Friesian horses. Application of a DNA test in the breeding programme will reduce the losses caused by hydrocephalus in the Friesian horse population.


Subject(s)
Codon, Nonsense/genetics , Horse Diseases/genetics , Hydrocephalus/genetics , N-Acetylgalactosaminyltransferases/genetics , Alleles , Animals , Breeding , Exons , Female , Genome-Wide Association Study , Horses , Humans , Hydrocephalus/pathology , Inbreeding , Polymorphism, Single Nucleotide , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL