ABSTRACT
BACKGROUND: We evaluated first-line treatment of metastatic microsatellite-stable colorectal cancer with short-course oxaliplatin-based chemotherapy alternating with immune checkpoint blockade. METHODS: Patients were randomly assigned to chemotherapy (the FLOX regimen; control group) or alternating two cycles each of FLOX and nivolumab (experimental group). Radiographic response assessment was done every eight weeks with progression-free survival (PFS) as the primary endpoint. Cox proportional-hazards regression models estimated associations between PFS and relevant variables. A post hoc analysis explored C-reactive protein as signal of responsiveness to immune checkpoint blockade. RESULTS: Eighty patients were randomised and 38 in each group received treatment. PFS was comparable-control group: median 9.2 months (95% confidence interval (CI), 6.3-12.7); experimental group: median 9.2 months (95% CI, 4.5-15.0). The adjusted Cox model revealed that experimental-group subjects aged ≥60 had significantly lowered progression risk (p = 0.021) with hazard ratio 0.17 (95% CI, 0.04-0.76). Experimental-group patients with C-reactive protein <5.0 mg/L when starting nivolumab (n = 17) reached median PFS 15.8 months (95% CI, 7.8-23.7). One-sixth of experimental-group cases (all KRAS/BRAF-mutant) achieved complete response. CONCLUSIONS: The investigational regimen did not improve the primary outcome for the intention-to-treat population but might benefit small subgroups of patients with previously untreated, metastatic microsatellite-stable colorectal cancer. TRIAL REGISTRATION: ClinicalTrials.gov number, NCT03388190 (02/01/2018).
Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Nivolumab , Oxaliplatin , Humans , Nivolumab/therapeutic use , Nivolumab/administration & dosage , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Oxaliplatin/administration & dosage , Oxaliplatin/therapeutic use , Male , Female , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Microsatellite Instability , Progression-Free Survival , Adult , Neoplasm Metastasis , Immune Checkpoint Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/geneticsABSTRACT
RNA polymerase I transcribes ribosomal DNA to produce precursor 47S rRNA. Post-transcriptional processing of this rRNA generates mature 28S, 18S and 5.8S rRNAs, which form the ribosomes, together with 5S rRNA, assembly factors and ribosomal proteins. We previously reported a homozygous variant in the catalytic subunit of RNA polymerase I, POLR1A, in two brothers with leukodystrophy and progressive course. However, the disease mechanism remained unknown. In this report, we describe another missense variant POLR1A NM_015425.3:c.1925C>A; p.(Thr642Asn) in homozygosity in two unrelated patients. Patient 1 was a 16-year-old male and Patient 2 was a 2-year-old female. Both patients manifested neurological deficits, with brain MRIs showing hypomyelinating leukodystrophy and cerebellar atrophy; and in Patient 1 additionally with hypointensity of globi pallidi and small volume of the basal ganglia. Patient 1 had progressive disease course, leading to death at the age of 16.5 years. Extensive in vitro experiments in fibroblasts from Patient 1 documented that the mutated POLR1A led to aberrant rRNA processing and degradation, and abnormal nucleolar homeostasis. Proteomics data analyses and further in vitro experiments documented abnormal protein homeostasis, and endoplasmic reticulum stress responses. We confirm that POLR1A biallelic variants cause neurodegenerative disease, expand the knowledge of the clinical phenotype of the disorder, and provide evidence for possible pathological mechanisms leading to POLR1A-related leukodystrophy.
Subject(s)
Neurodegenerative Diseases , RNA Polymerase I , Male , Female , Humans , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Neurodegenerative Diseases/genetics , Proteostasis , RNA, Ribosomal/metabolism , Ribosomes , RNA Processing, Post-TranscriptionalABSTRACT
BACKGROUND: Aminoacyl tRNA-synthetases are ubiquitously-expressed enzymes that attach amino acids to their cognate tRNA molecules. Mutations in several genes encoding aminoacyl tRNA-synthetases, have been associated with peripheral neuropathy, i.e. AARS1, GARS1, HARS1, YARS1 and WARS1. The pathogenic mechanism underlying AARS1-related neuropathy is not known. METHODS: From 2012 onward, all probands presenting at Telemark Hospital (Skien, Norway) with peripheral neuropathy were screened for variants in AARS1 using an "in-house" next-generation sequencing panel. DNA from patient's family members was examined by Sanger sequencing. Blood from affected family members and healthy controls were used for quantification of AARS1 mRNA and alanine. Proteomic analyses were conducted in peripheral blood mononuclear cells (PBMC) from four affected family members and five healthy controls. RESULTS: Seventeen individuals in two Norwegian families affected by Charcot-Marie-Tooth disease (CMT) were characterized in this study. The heterozygous NM_001605.2:c.976C > T p.(Arg326Trp) AARS1 mutation was identified in ten affected family members. All living carriers had a mild to severe length-dependent sensorimotor neuropathy. Three deceased obligate carriers aged 74-98 were reported to be unaffected, but were not examined in the clinic. Proteomic studies in PBMC from four affected individuals suggest an effect on the immune system mediated by components of a systemic response to chronic injury and inflammation. Furthermore, altered expression of proteins linked to mitochondrial function/dysfunction was observed. Proteomic data are available via ProteomeXchange using identifier PXD023842. CONCLUSION: This study describes clinical and neurophysiological features linked to the p.(Arg326Trp) variant of AARS1 in CMT-affected members of two Norwegian families. Proteomic analyses based on of PBMC from four CMT-affected individuals suggest that involvement of inflammation and mitochondrial dysfunction might contribute to AARS1 variant-associated peripheral neuropathy.
Subject(s)
Alanine-tRNA Ligase , Charcot-Marie-Tooth Disease , Alanine-tRNA Ligase/genetics , Charcot-Marie-Tooth Disease/genetics , Humans , Inflammation , Leukocytes, Mononuclear/metabolism , Mutation , Pedigree , Proteome/genetics , ProteomicsABSTRACT
The randomized METIMMOX trial (NCT03388190) examined if patients with previously untreated, unresectable abdominal metastases from microsatellite-stable (MSS) colorectal cancer (CRC) might benefit from potentially immunogenic, short-course oxaliplatin-based chemotherapy alternating with immune checkpoint blockade (ICB). Three of 38 patients assigned to this experimental treatment had metastases from BRAF-mutant MSS-CRC, in general a poor-prognostic subgroup explored here. The ≥70-year-old females presented with ascending colon adenocarcinomas with intermediate tumor mutational burden (6.2-11.8 mutations per megabase). All experienced early disappearance of the primary tumor followed by complete response of all overt metastatic disease, resulting in progression-free survival as long as 20-35 months. However, they encountered recurrence at previously unaffected sites and ultimately sanctuary organs, or as intrahepatic tumor evolution reflected in the terminal loss of initially induced T-cell clonality in liver metastases. Yet, the remarkable first-line responses to short-course oxaliplatin-based chemotherapy alternating with ICB may offer a novel therapeutic option to a particularly hard-to-treat MSS-CRC subgroup.