Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Chembiochem ; 17(2): 150-4, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26574896

ABSTRACT

Membrane-bound proteins are important pharmaceutical drug targets, yet few strategies exist for the identification of small-molecule-targeted membrane proteins in live-cell systems. By exploiting metabolic glycan engineering of cell membrane proteins, we have developed an in situ glycan-mediated ligand-controlled click ("GLiCo-Click") chemistry methodology that enables the attachment of small-molecule chemical probes to their receptor protein through glycans on live cells. In addition to enabling receptor enrichment from cell lysates, this strategy can be used to demonstrate target receptor engagement and enables the molecular characterization of receptors.


Subject(s)
Drug Delivery Systems , Polysaccharides/chemistry , Amino Acid Sequence , Antigens, Surface/chemistry , Chromatography, Liquid , Click Chemistry , Flow Cytometry , Ligands , Microscopy, Confocal , Molecular Sequence Data , Molecular Structure
2.
Nature ; 435(7042): 677-81, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15902208

ABSTRACT

Proteins in the Bcl-2 family are central regulators of programmed cell death, and members that inhibit apoptosis, such as Bcl-X(L) and Bcl-2, are overexpressed in many cancers and contribute to tumour initiation, progression and resistance to therapy. Bcl-X(L) expression correlates with chemo-resistance of tumour cell lines, and reductions in Bcl-2 increase sensitivity to anticancer drugs and enhance in vivo survival. The development of inhibitors of these proteins as potential anti-cancer therapeutics has been previously explored, but obtaining potent small-molecule inhibitors has proved difficult owing to the necessity of targeting a protein-protein interaction. Here, using nuclear magnetic resonance (NMR)-based screening, parallel synthesis and structure-based design, we have discovered ABT-737, a small-molecule inhibitor of the anti-apoptotic proteins Bcl-2, Bcl-X(L) and Bcl-w, with an affinity two to three orders of magnitude more potent than previously reported compounds. Mechanistic studies reveal that ABT-737 does not directly initiate the apoptotic process, but enhances the effects of death signals, displaying synergistic cytotoxicity with chemotherapeutics and radiation. ABT-737 exhibits single-agent-mechanism-based killing of cells from lymphoma and small-cell lung carcinoma lines, as well as primary patient-derived cells, and in animal models, ABT-737 improves survival, causes regression of established tumours, and produces cures in a high percentage of the mice.


Subject(s)
Antineoplastic Agents/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/classification , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/chemistry , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/pathology , Cell Line, Tumor , Cytochromes c/metabolism , Disease Models, Animal , Drug Synergism , Humans , Lymphoma/drug therapy , Lymphoma/pathology , Magnetic Resonance Spectroscopy , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Models, Molecular , Nitrophenols , Paclitaxel/pharmacology , Piperazines , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Sulfonamides , Survival Rate
3.
Bioorg Med Chem Lett ; 20(22): 6587-91, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20870405

ABSTRACT

The Bcl-2 family of proteins plays a major role in the regulation of apoptosis, or programmed cell death. Overexpression of the anti-apoptotic members of this family (Bcl-2, Bcl-x(L), and Mcl-1) can render cancer cells resistant to chemotherapeutic agents and therefore these proteins are important targets for the development of new anti-cancer agents. Here we describe the discovery of a potent, highly selective, Bcl-2 inhibitor using SAR by NMR and structure-based drug design which could serve as a starting point for the development of a Bcl-2 selective anti-cancer agent. Such an agent would potentially overcome the Bcl-x(L) mediated thrombocytopenia observed with ABT-263.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Models, Molecular , Structure-Activity Relationship
4.
ACS Med Chem Lett ; 11(10): 1829-1836, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33062160

ABSTRACT

Herein we describe the discovery of A-1331852, a first-in-class orally active BCL-XL inhibitor that selectively and potently induces apoptosis in BCL-XL-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-XL inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp3-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-XL. A-1331852 has since been used as a critical tool molecule for further exploring BCL-2 family protein biology, while also representing an attractive entry into a drug discovery program.

5.
J Med Chem ; 50(4): 641-62, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17256834

ABSTRACT

Overexpression of the antiapototic proteins Bcl-2 and Bcl-xL provides a common mechanism through which cancer cells gain a survival advantage and become resistant to conventional chemotherapy. Inhibition of these prosurvival proteins is an attractive strategy for cancer therapy. We recently described the discovery of a selective Bcl-xL antagonist that potentiates the antitumor activity of chemotherapy and radiation. Here we describe the use of structure-guided design to exploit a deep hydrophobic binding pocket on the surface of these proteins to develop the first dual, subnanomolar inhibitors of Bcl-xL and Bcl-2. This study culminated in the identification of 2, which exhibited EC50 values of 8 nM and 30 nM in Bcl-2 and Bcl-xL dependent cells, respectively. Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.


Subject(s)
Antineoplastic Agents/chemical synthesis , Biphenyl Compounds/chemical synthesis , Nitrophenols/chemical synthesis , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Lymphoma , Mice , Mice, SCID , Models, Molecular , Nitrophenols/chemistry , Nitrophenols/pharmacology , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Transplantation, Heterologous , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/chemistry
6.
J Med Chem ; 49(3): 1165-81, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451081

ABSTRACT

Development of a rationally designed potentiator of cancer chemotherapy, via inhibition of Bcl-X(L) function, is described. Lead compounds generated by NMR screening and directed parallel synthesis displayed sub-microM binding but were strongly deactivated in the presence of serum. The dominant component of serum deactivation was identified as domain III of human serum albumin (HSA); NMR solution structures of inhibitors bound to both Bcl-X(L) and HSA domain III indicated two potential optimization sites for separation of affinities. Modifications at both sites resulted in compounds with improved Bcl-X(L) binding and greatly increased activity in the presence of human serum, culminating in 73R, which bound to Bcl-X(L) with a K(i) of 0.8 nM. In a cellular assay 73R reversed the protection afforded by Bcl-X(L) overexpression against cytokine deprivation in FL5.12 cells with an EC(50) of 0.47 microM. 73R showed little effect on the viability of the human non small cell lung cancer cell line A549. However, consistent with the proposed mechanism, 73R potentiated the activity of paclitaxel and UV irradiation in vitro and potentiated the antitumor efficacy of paclitaxel in a mouse xenograft model.


Subject(s)
Aniline Compounds/chemical synthesis , Antineoplastic Agents/chemical synthesis , Piperidines/chemical synthesis , Sulfonamides/chemical synthesis , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Synergism , Fluorescence Polarization , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, SCID , Paclitaxel/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Protein Binding , Protein Structure, Tertiary , Serum , Serum Albumin/chemistry , Stereoisomerism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Transplantation, Heterologous , Ultraviolet Rays
7.
Mol Cancer Ther ; 14(8): 1837-47, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26013319

ABSTRACT

Hyperexpression of antiapoptotic BCL-2 family proteins allows cells to survive despite the receipt of signals that would ordinarily induce their deletion, a facet frequently exploited by tumors. Tumors addicted to the BCL-2 family proteins for survival are now being targeted therapeutically. For example, navitoclax, a BCL-2/BCL-XL/BCL-W inhibitor, is currently in phase I/II clinical trials in numerous malignancies. However, the related family member, MCL-1, limits the efficacy of navitoclax and other chemotherapeutic agents. In the present study, we identify breast cancer cell lines that depend upon MCL-1 for survival and subsequently determine the mechanism of apoptosis mediated by the MCL-1 selective inhibitor A-1210477. We demonstrate that apoptosis resulting from a loss in MCL-1 function requires expression of the proapoptotic protein BAK. However, expression of BCL-XL can limit apoptosis resulting from loss in MCL-1 function through sequestration of free BIM. Finally, we demonstrate substantial synergy between navitoclax and MCL-1 siRNA, the direct MCL-1 inhibitor A-1210477, or the indirect MCL-1 inhibitor flavopiridol, highlighting the therapeutic potential for inhibiting BCL-XL and MCL-1 in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Female , Gene Expression , Humans , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA, Small Interfering/genetics , Sulfonamides/pharmacology , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism
8.
J Med Chem ; 58(5): 2180-94, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25679114

ABSTRACT

Myeloid cell leukemia 1 (MCL-1) is a BCL-2 family protein that has been implicated in the progression and survival of multiple tumor types. Herein we report a series of MCL-1 inhibitors that emanated from a high throughput screening (HTS) hit and progressed via iterative cycles of structure-guided design. Advanced compounds from this series exhibited subnanomolar affinity for MCL-1 and excellent selectivity over other BCL-2 family proteins as well as multiple kinases and GPCRs. In a MCL-1 dependent human tumor cell line, administration of compound 30b rapidly induced caspase activation with associated loss in cell viability. The small molecules described herein thus comprise effective tools for studying MCL-1 biology.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Multiple Myeloma/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Pancreatic Neoplasms/drug therapy , Apoptosis/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Databases, Factual , High-Throughput Screening Assays , Humans , Molecular Docking Simulation , Molecular Structure , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Protein Binding , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Sci Transl Med ; 7(279): 279ra40, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25787766

ABSTRACT

The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2-selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL-selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL-selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Administration, Oral , Aniline Compounds/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Benzothiazoles/chemistry , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Cell Survival , Docetaxel , Gene Expression Profiling , Granulocytes/metabolism , Humans , Isoquinolines/chemistry , Kinetics , Mice , Neoplasm Transplantation , Neoplasms/metabolism , Neutropenia/chemically induced , Neutrophils/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use , Taxoids/adverse effects , Thrombocytopenia/chemically induced , bcl-X Protein/antagonists & inhibitors , bcl-X Protein/metabolism
10.
ACS Med Chem Lett ; 5(10): 1088-93, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25313317

ABSTRACT

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.

11.
Nat Med ; 19(2): 202-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23291630

ABSTRACT

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-X(L) inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2-selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2-dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2-dependent hematological cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Blood Platelets/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Hematologic Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Survival/drug effects , Dogs , Female , HeLa Cells , Humans , Mice , Mice, SCID , Proto-Oncogene Proteins c-bcl-2/chemistry , Tumor Burden , Xenograft Model Antitumor Assays , bcl-X Protein/antagonists & inhibitors
12.
Mol Cancer Ther ; 10(12): 2340-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21914853

ABSTRACT

The ability of a cancer cell to avoid apoptosis is crucial to tumorigenesis and can also contribute to chemoresistance. The Bcl-2 family of prosurvival proteins (Bcl-2, Bcl-X(L), Bcl-w, Mcl-1, and A1) plays a key role in these processes. We previously reported the discovery of ABT-263 (navitoclax), a potent small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. While navitoclax exhibits single-agent activity in tumors dependent on Bcl-2 or Bcl-X(L) for survival, the expression of Mcl-1 has been shown to confer resistance to navitoclax, most notably in solid tumors. Thus, therapeutic agents that can downregulate or neutralize Mcl-1 are predicted to synergize potently with navitoclax. Here, we report the activity of navitoclax in combination with 19 clinically relevant agents across a panel of 46 human solid tumor cell lines. Navitoclax broadly enhanced the activity of multiple therapeutic agents in vitro and enhanced efficacy of both docetaxel and erlotinib in xenograft models. The ability of navitoclax to synergize with docetaxel or erlotinib corresponded to an altered sensitivity of the mitochondria toward navitoclax, which was associated with the downmodulation of Mcl-1 and/or upregulation of Bim. These data provide a rationale to interrogate these combinations clinically.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Sulfonamides/pharmacology , Aniline Compounds/administration & dosage , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Drug Synergism , Female , HCT116 Cells , Hep G2 Cells , Humans , K562 Cells , Male , Mice , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/administration & dosage , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , bcl-X Protein/antagonists & inhibitors
14.
J Med Chem ; 51(21): 6902-15, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-18841882

ABSTRACT

Overexpression of prosurvival proteins such as Bcl-2 and Bcl-X L has been correlated with tumorigenesis and resistance to chemotherapy, and thus, the development of antagonists of these proteins may provide a novel means for the treatment of cancer. We recently described the discovery of 1 (ABT-737), which binds Bcl-2, Bcl-X L, and Bcl-w with high affinity, shows robust antitumor activity in murine tumor xenograft models, but is not orally bioavailable. Herein, we report that targeted modifications at three key positions of 1 resulted in a 20-fold improvement in the pharmacokinetic/pharmacodynamic relationship (PK/PD) between oral exposure (AUC) and in vitro efficacy in human tumor cell lines (EC 50). The resulting compound, 2 (ABT-263), is orally efficacious in an established xenograft model of human small cell lung cancer, inducing complete tumor regressions in all animals. Compound 2 is currently in multiple phase 1 clinical trials in patients with small cell lung cancer and hematological malignancies.


Subject(s)
Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Administration, Oral , Animals , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Humans , Mice , Molecular Structure , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
15.
Cancer Res ; 68(9): 3421-8, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18451170

ABSTRACT

Overexpression of the prosurvival Bcl-2 family members (Bcl-2, Bcl-xL, and Mcl-1) is commonly associated with tumor maintenance, progression, and chemoresistance. We previously reported the discovery of ABT-737, a potent, small-molecule Bcl-2 family protein inhibitor. A major limitation of ABT-737 is that it is not orally bioavailable, which would limit chronic single agent therapy and flexibility to dose in combination regimens. Here we report the biological properties of ABT-263, a potent, orally bioavailable Bad-like BH3 mimetic (K(i)'s of <1 nmol/L for Bcl-2, Bcl-xL, and Bcl-w). The oral bioavailability of ABT-263 in preclinical animal models is 20% to 50%, depending on formulation. ABT-263 disrupts Bcl-2/Bcl-xL interactions with pro-death proteins (e.g., Bim), leading to the initiation of apoptosis within 2 hours posttreatment. In human tumor cells, ABT-263 induces Bax translocation, cytochrome c release, and subsequent apoptosis. Oral administration of ABT-263 alone induces complete tumor regressions in xenograft models of small-cell lung cancer and acute lymphoblastic leukemia. In xenograft models of aggressive B-cell lymphoma and multiple myeloma where ABT-263 exhibits modest or no single agent activity, it significantly enhances the efficacy of clinically relevant therapeutic regimens. These data provide the rationale for clinical trials evaluating ABT-263 in small-cell lung cancer and B-cell malignancies. The oral efficacy of ABT-263 should provide dosing flexibility to maximize clinical utility both as a single agent and in combination regimens.


Subject(s)
Aniline Compounds/therapeutic use , Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/therapeutic use , Administration, Oral , Aniline Compounds/administration & dosage , Aniline Compounds/adverse effects , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Murine-Derived , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/pathology , Cells, Cultured , Drug Synergism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/pathology , Mice , Mice, Knockout , Mice, SCID , Models, Biological , Neoplasms/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Rituximab , Sulfonamides/administration & dosage , Sulfonamides/adverse effects , Thrombocytopenia/chemically induced , Treatment Outcome , Tumor Burden , Xenograft Model Antitumor Assays
16.
J Am Chem Soc ; 128(50): 16206-12, 2006 Dec 20.
Article in English | MEDLINE | ID: mdl-17165773

ABSTRACT

One of the primary objectives in the design of protein inhibitors is to shape the three-dimensional structures of small molecules to be complementary to the binding site of a target protein. In the course of our efforts to discover potent inhibitors of Bcl-2 family proteins, we found a unique folded conformation adopted by tethered aromatic groups in the ligand that significantly enhanced binding affinity to Bcl-XL. This finding led us to design compounds that were biased by nonbonding interactions present in a urea tether to adopt this bioactive, folded motif. To characterize the key interactions that induce the desired conformational bias, a series of substituted N,N'-diarylureas were prepared and analyzed using X-ray crystallography and quantum mechanical calculations. Stabilizing pi-stacking interactions and destabilizing steric interactions were predicted to work in concert in two of the substitution patterns to promote the bioactive conformation as a global energy minimum and result in a high target binding affinity. Conversely, intramolecular hydrogen bonding present in the third substitution motif promotes a less active, extended conformer as the energetically favored geometry. These findings were corroborated when the inhibition constant of binding to Bcl-XL was determined for fully elaborated analogues bearing these structural motifs. Finally, we obtained the NMR solution structure of the disubstituted N,N'-diarylurea bound to Bcl-XL demonstrating the folded conformation of the urea motif engaged in extensive pi-interactions with the protein.


Subject(s)
Drug Design , bcl-X Protein/antagonists & inhibitors , Binding Sites , Computer Simulation , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Structure, Tertiary , bcl-X Protein/chemistry , bcl-X Protein/metabolism
17.
Cancer Res ; 66(17): 8731-9, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16951189

ABSTRACT

Inhibition of the prosurvival members of the Bcl-2 family of proteins represents an attractive strategy for the treatment of cancer. We have previously reported the activity of ABT-737, a potent inhibitor of Bcl-2, Bcl-X(L), and Bcl-w, which exhibits monotherapy efficacy in xenograft models of small-cell lung cancer and lymphoma and potentiates the activity of numerous cytotoxic agents. Here we describe the biological activity of A-385358, a small molecule with relative selectivity for binding to Bcl-X(L) versus Bcl-2 (K(i)'s of 0.80 and 67 nmol/L for Bcl-X(L) and Bcl-2, respectively). This compound efficiently enters cells and co-localizes with the mitochondrial membrane. Although A-385358 shows relatively modest single-agent cytotoxic activity against most tumor cell lines, it has an EC(50) of <500 nmol/L in cells dependent on Bcl-X(L) for survival. In addition, A-385358 enhances the in vitro cytotoxic activity of numerous chemotherapeutic agents (paclitaxel, etoposide, cisplatin, and doxorubicin) in several tumor cell lines. In A549 non-small-cell lung cancer cells, A-385358 potentiates the activity of paclitaxel by as much as 25-fold. Importantly, A-385358 also potentiated the activity of paclitaxel in vivo. Significant inhibition of tumor growth was observed when A-385358 was added to maximally tolerated or half maximally tolerated doses of paclitaxel in the A549 xenograft model. In tumors, the combination therapy also resulted in a significant increase in mitotic arrest followed by apoptosis relative to paclitaxel monotherapy.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/therapeutic use , Biphenyl Compounds/therapeutic use , Lung Neoplasms/drug therapy , Nitrophenols/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/pharmacokinetics , Aniline Compounds/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacokinetics , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Drug Synergism , Humans , Kinetics , Male , Mice , Mice, SCID , Nitrophenols/pharmacokinetics , Nitrophenols/pharmacology , Paclitaxel/pharmacokinetics , Piperazines/pharmacokinetics , Piperazines/pharmacology , Piperazines/therapeutic use , Sulfonamides/pharmacokinetics , Transplantation, Heterologous
18.
Anal Biochem ; 307(1): 70-5, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12137781

ABSTRACT

Antiapoptotic protein Bcl-x(L) has been demonstrated to play a very important role in a variety of diseases such as cancer. Its biological function can be inhibited by proapoptotic proteins such Bak, Bad, and Bax by forming complexes mediated primarily by the Bcl-2 homology 3 (BH3) domain. To facilitate drug discovery for Bcl-x(L) inhibitors, we have developed and optimized a fluorescence polarization assay based on the interaction between Bcl-x(L) and BH3 domain peptides. We observed that the fluorescein-labeled Bad BH3 peptide [NLWAAQRYGRELRRMSDK(fluorescein)FVD or fluorescent Bad peptide] generates best overall results. Fluorescent Bad peptide interacts strongly with Bcl-x(L) with a K(d) of 21.48nM. The assay is stable over a 24-h period and can tolerate the presence of dimethyl sulfoxide up to 8%. By using a competition assay, several peptides derived from the BH3 region of Bak, Bad, Bax, and Bcl-2 were investigated. Bad and Bak BH3 peptides compete efficiently with IC(50) values of 0.048 and 1.14 microM, respectively, while the peptides from the BH3 region of Bcl-2 and Bax compete weakly. A mutated Bak peptide, which has been shown to be inactive for binding to Bcl-x(L), did not compete. The relative binding order of the peptides (Bad>Bak>Bcl-2>Bax>mutated Bak) correlates well with previously published results. When tested in high-throughput formats, the assay has a signal-to-noise ratio of 15.37 and a Z(') factor of at least 0.73. The plate-to-plate variability for free peptide control and bound peptide control is minimal. This validates the assay not only for investigating the nature of Bcl-x(L)-peptide interaction, but also for high-throughput screening of Bcl-x(L) inhibitors.


Subject(s)
Fluorescence Polarization/methods , Proto-Oncogene Proteins c-bcl-2/analysis , Binding, Competitive , Carrier Proteins/analysis , Fluorescent Dyes , Humans , Mutation , Peptide Fragments/chemistry , Proto-Oncogene Proteins/analysis , bcl-2-Associated X Protein , bcl-Associated Death Protein , bcl-X Protein
SELECTION OF CITATIONS
SEARCH DETAIL