Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Affiliation country
Publication year range
1.
Mol Psychiatry ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092890

ABSTRACT

Diffusion MRI (dMRI) can be used to probe microstructural properties of brain tissue and holds great promise as a means to non-invasively map Alzheimer's disease (AD) pathology. Few studies have evaluated multi-shell dMRI models such as neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator (MAP)-MRI in cortical gray matter where many of the earliest histopathological changes occur in AD. Here, we investigated the relationship between CSF pTau181 and Aß1-42 burden and regional cortical NODDI and MAP-MRI indices in 46 cognitively unimpaired individuals, 18 with mild cognitive impairment, and two with dementia (mean age: 71.8 ± 6.2 years) from the Alzheimer's Disease Neuroimaging Initiative. We compared findings to more conventional cortical thickness measures. Lower CSF Aß1-42 and higher pTau181 were associated with cortical dMRI measures reflecting less hindered or restricted diffusion and greater diffusivity. Cortical dMRI measures, but not cortical thickness measures, were more widely associated with Aß1-42 than pTau181 and better distinguished Aß+ from Aß- participants than pTau+ from pTau- participants. dMRI associations mediated the relationship between CSF markers and delayed logical memory performance, commonly impaired in early AD. dMRI metrics sensitive to early AD pathogenesis and microstructural damage may be better measures of subtle neurodegeneration in comparison to standard cortical thickness and help to elucidate mechanisms underlying cognitive decline.

2.
Alzheimers Dement ; 20(10): 7350-7360, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39258539

ABSTRACT

The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi-platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex. To remain technically current, the ADNI MRI protocol has changed substantially over the past two decades. The ADNI 4 protocol contains nine different imaging types (e.g., three dimensional [3D] T1-weighted and fluid-attenuated inversion recovery [FLAIR]). Our view is that the ADNI MRI data are a greatly underutilized resource. The purpose of this paper is to educate the scientific community on ADNI MRI methods and content to promote greater awareness, accessibility, and use. HIGHLIGHTS: The MRI Core provides multi-platform standardized protocols, carefully curated image data, and quantitative analysis by expert groups. The ADNI MRI protocol has undergone major changes over the past two decades to remain technically current. As of April 25, 2024, the following numbers of image series are available: 17,141 3D T1w; 6877 FLAIR; 3140 T2/PD; 6623 GRE; 3237 dMRI; 2846 ASL; 2968 TF-fMRI; and 2861 HighResHippo (see Table 1 for abbreviations). As of April 25, 2024, the following numbers of quantitative analyses are available: FreeSurfer 10,997; BSI 6120; tensor based morphometry (TBM) and TBM-SYN 12,019; WMH 9944; dMRI 1913; ASL 925; TF-fMRI NFQ 2992; and medial temporal subregion volumes 2726 (see Table 4 for abbreviations). ADNI MRI is an underutilized resource that could be more useful to the research community.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Neuroimaging , Humans , Alzheimer Disease/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Brain/diagnostic imaging , Brain/pathology
3.
Hum Brain Mapp ; 43(1): 194-206, 2022 01.
Article in English | MEDLINE | ID: mdl-32301246

ABSTRACT

The ENIGMA-DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder-oriented working groups used the ENIGMA-DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA-defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual's brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross-diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large-scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross-diagnosis features.


Subject(s)
Diffusion Tensor Imaging , Mental Disorders , White Matter , Biomedical Research/methods , Biomedical Research/standards , Diffusion Tensor Imaging/methods , Diffusion Tensor Imaging/standards , Humans , Mental Disorders/diagnostic imaging , Mental Disorders/pathology , Multicenter Studies as Topic , Psychiatry/methods , Psychiatry/standards , White Matter/diagnostic imaging , White Matter/pathology
4.
Mol Psychiatry ; 25(11): 2818-2831, 2020 11.
Article in English | MEDLINE | ID: mdl-31358905

ABSTRACT

22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.


Subject(s)
DiGeorge Syndrome/diagnostic imaging , DiGeorge Syndrome/pathology , Diffusion Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology , Adolescent , Adult , Anisotropy , Child , DiGeorge Syndrome/genetics , Female , Humans , Male , Middle Aged , Young Adult
5.
Hum Brain Mapp ; 40(15): 4370-4380, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31271489

ABSTRACT

Recent evidence suggests the aging process is accelerated by HIV. Degradation of white matter (WM) has been independently associated with HIV and healthy aging. Thus, WM may be vulnerable to joint effects of HIV and aging. Diffusion-weighted imaging (DWI) was conducted with HIV-seropositive (n = 72) and HIV-seronegative (n = 34) adults. DWI data underwent tractography, which was parcellated into 18 WM tracts of interest (TOIs). Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) regression was conducted assessing the joint effect of advanced age and HIV on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) along TOI fibers. In addition to main effects of age and HIV on WM microstructure, the interactive effect of age and HIV was significantly related to lower FA and higher MD, AD, and RD across all TOIs. The location of findings was consistent with the clinical presentation of HIV-associated neurocognitive disorders. While older age is related to poorer WM microstructure, its detrimental effect on WM is stronger among HIV+ relative to HIV- individuals. Loss of WM integrity in the context of advancing age may place HIV+ individuals at increased risk for brain and cognitive compromise.


Subject(s)
Aging/pathology , Diffusion Tensor Imaging , HIV Infections/pathology , White Matter/pathology , AIDS Dementia Complex/pathology , Adult , Aged , Anisotropy , Case-Control Studies , Disease Progression , Female , HIV Seronegativity , Humans , Male , Middle Aged , Regression Analysis , Young Adult
6.
J Neurovirol ; 25(3): 342-353, 2019 06.
Article in English | MEDLINE | ID: mdl-30767174

ABSTRACT

Growing evidence points to persistent neurological injury in chronic HIV infection. It remains unclear whether chronically HIV-infected individuals on combined antiretroviral therapy (cART) develop progressive brain injury and impaired neurocognitive function despite successful viral suppression and immunological restoration. In a longitudinal neuroimaging study for the HIV Neuroimaging Consortium (HIVNC), we used tensor-based morphometry to map the annual rate of change of regional brain volumes (mean time interval 1.0 ± 0.5 yrs), in 155 chronically infected and treated HIV+ participants (mean age 48.0 ± 8.9 years; 83.9% male) . We tested for associations between rates of brain tissue loss and clinical measures of infection severity (nadir or baseline CD4+ cell count and baseline HIV plasma RNA concentration), HIV duration, cART CNS penetration-effectiveness scores, age, as well as change in AIDS Dementia Complex stage. We found significant brain tissue loss across HIV+ participants, including those neuro-asymptomatic with undetectable viral loads, largely localized to subcortical regions. Measures of disease severity, age, and neurocognitive decline were associated with greater atrophy. Chronically HIV-infected and treated individuals may undergo progressive brain tissue loss despite stable and effective cART, which may contribute to neurocognitive decline. Understanding neurological complications of chronic infection and identifying factors associated with atrophy may help inform strategies to maintain brain health in people living with HIV.


Subject(s)
Brain/pathology , HIV Infections/pathology , Adult , Anti-Retroviral Agents/therapeutic use , Atrophy/pathology , Atrophy/virology , Diffusion Tensor Imaging , Female , HIV Infections/drug therapy , Humans , Male , Middle Aged
7.
Alcohol Clin Exp Res ; 42(9): 1640-1649, 2018 09.
Article in English | MEDLINE | ID: mdl-29957870

ABSTRACT

BACKGROUND: Alcohol use disorder (AUD) is prevalent among individuals diagnosed with human immunodeficiency virus (HIV), and both HIV and alcohol use have been shown to negatively affect the integrity of white matter pathways in the brain. Behavioral, functional, and anatomical impairments have been linked independently to HIV and alcohol use, and these impairments have bases in specific frontally mediated pathways within the brain. METHODS: Magnetic resonance imaging data were acquired for 37 HIV+ participants without dementia or hepatitis C. Imaging data were processed through the FreeSurfer and TraCULA pipelines to obtain 4 bilateral frontal white matter tracts for each participant. Diffusion metrics of white matter integrity along the highest probability pathway for each tract were analyzed with respect to demographics, disease-specific variables, and reported substance use. RESULTS: Significantly increased axial diffusivity (decreased axonal integrity) and a trending increase in mean diffusivity were observed along the anterior thalamic radiation (ATR) in participants with a history of AUD. A diagnosis of AUD explained over 36% of the variance in diffusivity along the ATR overall when accounting for clinical variables including nadir CD4 and age-adjusted HIV infection length. CONCLUSIONS: This study provides evidence of HIV-related associations between alcohol use and indicators of axonal integrity loss along the ATR, a frontal pathway involved in the inhibition of addictive or unwanted behaviors. Reduced axonal integrity of this pathway was greatest in HIV+ participants with an AUD, even when considering the effect of age-adjusted disease length and severity (nadir CD4). This finding implicates a potential biological mechanism linking reduced integrity of frontal white matter to the high prevalence of AUD in an HIV+ population without dementia or hepatitis C.


Subject(s)
Alcohol Drinking/adverse effects , Alcohol Drinking/pathology , Frontal Lobe/diagnostic imaging , HIV Infections/diagnostic imaging , National Institute on Alcohol Abuse and Alcoholism (U.S.) , White Matter/diagnostic imaging , Adult , Alcohol Drinking/epidemiology , Alcohol Drinking/trends , Cross-Sectional Studies , Diffusion Tensor Imaging/trends , Female , HIV Infections/epidemiology , Humans , Magnetic Resonance Imaging/trends , Male , Middle Aged , National Institute on Alcohol Abuse and Alcoholism (U.S.)/trends , Neuropsychological Tests , United States/epidemiology
8.
Magn Reson Med ; 78(6): 2322-2333, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28266059

ABSTRACT

PURPOSE: In diffusion MRI (dMRI), fractional anisotropy derived from the single-tensor model (FADTI ) is the most widely used metric to characterize white matter (WM) microarchitecture, despite known limitations in regions with crossing fibers. Due to time constraints when scanning patients in clinical settings, high angular resolution diffusion imaging acquisition protocols, often used to overcome these limitations, are still rare in clinical population studies. However, the tensor distribution function (TDF) may be used to model multiple underlying fibers by representing the diffusion profile as a probabilistic mixture of tensors. METHODS: We compared the ability of standard FADTI and TDF-derived FA (FATDF ), calculated from a range of dMRI angular resolutions (41, 30, 15, and 7 gradient directions), to profile WM deficits in 251 individuals from the Alzheimer's Disease Neuroimaging Initiative and to detect associations with 1) Alzheimer's disease diagnosis, 2) Clinical Dementia Rating scores, and 3) average hippocampal volume. RESULTS: Across angular resolutions and statistical tests, FATDF showed larger effect sizes than FADTI , particularly in regions preferentially affected by Alzheimer's disease, and was less susceptible to crossing fiber anomalies. CONCLUSION: The TDF "corrected" form of FA may be a more sensitive and accurate alternative to the commonly used FADTI , even in clinical quality dMRI data. Magn Reson Med 78:2322-2333, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Alzheimer Disease/diagnostic imaging , Anisotropy , Diffusion Magnetic Resonance Imaging , Aged , Brain/diagnostic imaging , Brain Mapping , Cognition Disorders/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Memory , Memory Disorders/diagnostic imaging , Middle Aged , Reproducibility of Results , White Matter/diagnostic imaging
9.
J Neurovirol ; 23(3): 422-429, 2017 06.
Article in English | MEDLINE | ID: mdl-28101804

ABSTRACT

Our aim was to examine the clinical relevance of white matter hyperintensities (WMH) in HIV. We used an automated approach to quantify WMH volume in HIV seropositive (HIV+; n = 65) and HIV seronegative (HIV-; n = 29) adults over age 60. We compared WMH volumes between HIV+ and HIV- groups in cross-sectional and multiple time-point analyses. We also assessed correlations between WMH volumes and cardiovascular, HIV severity, cognitive scores, and diffusion tensor imaging variables. Serostatus groups did not differ in WMH volume, but HIV+ participants had less cerebral white matter (mean: 470.95 [43.24] vs. 497.63 [49.42] mL, p = 0.010). The distribution of WMH volume was skewed in HIV+ with a high proportion (23%) falling above the 95th percentile of WMH volume defined by the HIV- group. Serostatus groups had similar amount of WMH volume growth over time. Total WMH volume directly correlated with measures of hypertension and inversely correlated with measures of global cognition, particularly in executive functioning, and psychomotor speed. Greater WMH volume was associated with poorer brain integrity measured from diffusion tensor imaging (DTI) in the corpus callosum and sagittal stratum. In this group of HIV+ individuals over 60, WMH burden was associated with cardiovascular risk and both worse diffusion MRI and cognition. The median total burden did not differ by serostatus; however, a subset of HIV+ individuals had high WMH burden.


Subject(s)
Cerebral Cortex/pathology , Corpus Callosum/pathology , HIV Infections/pathology , Hypertension/pathology , RNA, Viral/blood , White Matter/pathology , Aged , Aged, 80 and over , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/virology , Cognition/physiology , Corpus Callosum/diagnostic imaging , Corpus Callosum/virology , Cross-Sectional Studies , Diffusion Tensor Imaging , Executive Function/physiology , Female , HIV Infections/diagnostic imaging , HIV Infections/virology , HIV-1/pathogenicity , HIV-1/physiology , Humans , Hypertension/diagnostic imaging , Hypertension/virology , Male , Middle Aged , Neuropsychological Tests , Severity of Illness Index , White Matter/diagnostic imaging , White Matter/virology
10.
Proc Natl Acad Sci U S A ; 110(12): 4768-73, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23471985

ABSTRACT

Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.


Subject(s)
Alzheimer Disease/genetics , Brain/physiopathology , Chromosomes, Human, Pair 11/genetics , Extracellular Matrix Proteins/genetics , Genetic Variation , Twins, Dizygotic , Twins, Monozygotic , Adult , Autistic Disorder/diagnostic imaging , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Brain/diagnostic imaging , Endosomal Sorting Complexes Required for Transport/genetics , Female , Genome-Wide Association Study , Humans , Magnetic Resonance Imaging , Male , Nedd4 Ubiquitin Protein Ligases , Radiography , Severity of Illness Index , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/genetics
11.
Hum Brain Mapp ; 36(8): 3087-103, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26037224

ABSTRACT

Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative-50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We tested whether AD disrupts the "rich club" - a network property where high-degree network nodes are more interconnected than expected by chance. We calculated the rich club properties at a range of degree thresholds, as well as other network topology measures including global degree, clustering coefficient, path length, and efficiency. Network disruptions predominated in the low-degree regions of the connectome in patients, relative to controls. The other metrics also showed alterations, suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain connectivity, and focusing on more remotely connected nodes rather than the central core of the network. AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points to disruptions predominantly in the peripheral network components; other modalities of data are needed to know if this indicates impaired communication among non rich club regions. The highly connected core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive decline.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Connectome/methods , Aged , Aging/pathology , Cognitive Dysfunction/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Longitudinal Studies , Male , Mental Status Schedule , Neural Pathways/pathology
12.
Neuroimage ; 102 Pt 2: 548-57, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25072390

ABSTRACT

Obesity is a crucial public health issue in developed countries, with implications for cardiovascular and brain health as we age. A number of commonly-carried genetic variants are associated with obesity. Here we aim to see whether variants in obesity-associated genes--NEGR1, FTO, MTCH2, MC4R, LRRN6C, MAP2K5, FAIM2, SEC16B, ETV5, BDNF-AS, ATXN2L, ATP2A1, KCTD15, and TNN13K--are associated with white matter microstructural properties, assessed by high angular resolution diffusion imaging (HARDI) in young healthy adults between 20 and 30 years of age from the Queensland Twin Imaging study (QTIM). We began with a multi-locus approach testing how a number of common genetic risk factors for obesity at the single nucleotide polymorphism (SNP) level may jointly influence white matter integrity throughout the brain and found a wide spread genetic effect. Risk allele rs2815752 in NEGR1 was most associated with lower white matter integrity across a substantial portion of the brain. Across the area of significance in the bilateral posterior corona radiata, each additional copy of the risk allele was associated with a 2.2% lower average FA. This is the first study to find an association between an obesity risk gene and differences in white matter integrity. As our subjects were young and healthy, our results suggest that NEGR1 has effects on brain structure independent of its effect on obesity.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Cell Adhesion Molecules, Neuronal/genetics , Obesity/genetics , White Matter/anatomy & histology , White Matter/physiology , Adult , Diffusion Tensor Imaging , Female , GPI-Linked Proteins/genetics , Genetic Variation , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Young Adult
13.
Hum Brain Mapp ; 35(3): 975-92, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23362139

ABSTRACT

People with HIV are living longer as combination antiretroviral therapy (cART) becomes more widely available. However, even when plasma viral load is reduced to untraceable levels, chronic HIV infection is associated with neurological deficits and brain atrophy beyond that of normal aging. HIV is often marked by cortical and subcortical atrophy, but the integrity of the brain's white matter (WM) pathways also progressively declines. Few studies focus on older cohorts where normal aging may be compounded with HIV infection to influence deficit patterns. In this relatively large diffusion tensor imaging (DTI) study, we investigated abnormalities in WM fiber integrity in 56 HIV+ adults with access to cART (mean age: 63.9 ± 3.7 years), compared to 31 matched healthy controls (65.4 ± 2.2 years). Statistical 3D maps revealed the independent effects of HIV diagnosis and age on fractional anisotropy (FA) and diffusivity, but we did not find any evidence for an age by diagnosis interaction in our current sample. Compared to healthy controls, HIV patients showed pervasive FA decreases and diffusivity increases throughout WM. We also assessed neuropsychological (NP) summary z-score associations. In both patients and controls, fiber integrity measures were associated with NP summary scores. The greatest differences were detected in the corpus callosum and in the projection fibers of the corona radiata. These deficits are consistent with published NP deficits and cortical atrophy patterns in elderly people with HIV.


Subject(s)
Aging/pathology , Diffusion Tensor Imaging/methods , HIV Infections/pathology , Leukoencephalopathies/pathology , Aged , Aging/physiology , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Atrophy/pathology , Corpus Callosum/pathology , Diffusion Tensor Imaging/instrumentation , Female , HIV Infections/drug therapy , HIV Infections/physiopathology , Humans , Leukoencephalopathies/physiopathology , Male , Middle Aged , Nerve Fibers/pathology , Neuropsychological Tests/statistics & numerical data
14.
bioRxiv ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39229061

ABSTRACT

Brain Age Gap Estimation (BrainAGE) is an estimate of the gap between a person's chronological age (CA) and a measure of their brain's 'biological age' (BA). This metric is often used as a marker of accelerated aging, albeit with some caveats. Age prediction models trained on brain structural and functional MRI have been employed to derive BrainAGE biomarkers, for predicting the risk of neurodegeneration. While voxel-based and along-tract microstructural maps from diffusion MRI have been used to study brain aging, no studies have evaluated along-tract microstructure for computing BrainAGE. In this study, we train machine learning models to predict a person's age using along-tract microstructural profiles from diffusion tensor imaging. We were able to demonstrate differential aging patterns across different white matter bundles and microstructural measures. The novel Bundle Age Gap Estimation (BundleAGE) biomarker shows potential in quantifying risk factors for neurodegenerative diseases and aging, while incorporating finer scale information throughout white matter bundles.

15.
bioRxiv ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39149378

ABSTRACT

Alzheimer's disease (AD) is characterized by cognitive decline and memory loss due to the abnormal accumulation of amyloid-beta (Aß) plaques and tau tangles in the brain; its onset and progression also depend on genetic factors such as the apolipoprotein E (APOE) genotype. Understanding how these factors affect the brain's neural pathways is important for early diagnostics and interventions. Tractometry is an advanced technique for 3D quantitative assessment of white matter tracts, localizing microstructural abnormalities in diseased populations in vivo. In this work, we applied BUAN (Bundle Analytics) tractometry to 3D diffusion MRI data from 730 participants in ADNI3 (phase 3 of the Alzheimer's Disease Neuroimaging Initiative; age range: 55-95 years, 349M/381F, 214 with mild cognitive impairment, 69 with AD, and 447 cognitively healthy controls). Using along-tract statistical analysis, we assessed the localized impact of amyloid, tau, and APOE genetic variants on the brain's neural pathways. BUAN quantifies microstructural properties of white matter tracts, supporting along-tract statistical analyses that identify factors associated with brain microstructure. We visualize the 3D profile of white matter tract associations with tau and amyloid burden in Alzheimer's disease; strong associations near the cortex may support models of disease propagation along neural pathways. Relative to the neutral genotype, APOE ϵ3/ϵ3, carriers of the AD-risk conferring APOE ϵ4 genotype show microstructural abnormalities, while carriers of the protective ϵ2 genotype also show subtle differences. Of all the microstructural metrics, mean diffusivity (MD) generally shows the strongest associations with AD pathology, followed by axial diffusivity (AxD) and radial diffusivity (RD), while fractional anisotropy (FA) is typically the least sensitive metric. Along-tract microstructural metrics are sensitive to tau and amyloid accumulation, showing the potential of diffusion MRI to track AD pathology and map its impact on neural pathways.

16.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712293

ABSTRACT

Introduction: Diffusion MRI is sensitive to the microstructural properties of brain tissues, and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest, without considering the underlying fiber geometry. Methods: Here, we propose a novel Macrostructure-Informed Normative Tractometry (MINT) framework, to investigate how white matter microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia. We compare MINT-derived metrics with univariate metrics from diffusion tensor imaging (DTI), to examine how fiber geometry may impact interpretation of microstructure. Results: In two multi-site cohorts from North America and India, we find consistent patterns of microstructural and macrostructural anomalies implicated in MCI and dementia; we also rank diffusion metrics' sensitivity to dementia. Discussion: We show that MINT, by jointly modeling tract shape and microstructure, has potential to disentangle and better interpret the effects of degenerative disease on the brain's neural pathways.

17.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38463962

ABSTRACT

Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).

18.
NPJ Parkinsons Dis ; 10(1): 151, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128907

ABSTRACT

The progression of Parkinson's disease (PD) is associated with microstructural alterations in neural pathways, contributing to both motor and cognitive decline. However, conflicting findings have emerged due to the use of heterogeneous methods in small studies. Here we performed a large diffusion MRI study in PD, integrating data from 17 cohorts worldwide, to identify stage-specific profiles of white matter differences. Diffusion-weighted MRI data from 1654 participants diagnosed with PD (age: 20-89 years; 33% female) and 885 controls (age: 19-84 years; 47% female) were analyzed using the ENIGMA-DTI protocol to evaluate white matter microstructure. Skeletonized maps of fractional anisotropy (FA) and mean diffusivity (MD) were compared across Hoehn and Yahr (HY) disease groups and controls to reveal the profile of white matter alterations at different stages. We found an enhanced, more widespread pattern of microstructural alterations with each stage of PD, with eventually lower FA and higher MD in almost all regions of interest: Cohen's d effect sizes reached d = -1.01 for FA differences in the fornix at PD HY Stage 4/5. The early PD signature in HY stage 1 included higher FA and lower MD across the entire white matter skeleton, in a direction opposite to that typical of other neurodegenerative diseases. FA and MD were associated with motor and non-motor clinical dysfunction. While overridden by degenerative changes in the later stages of PD, early PD is associated with paradoxically higher FA and lower MD in PD, consistent with early compensatory changes associated with the disorder.

19.
Article in English | MEDLINE | ID: mdl-38083769

ABSTRACT

Fiber orientation dispersion is one of the fundamental features that can be estimated from diffusion magnetic resonance imaging (dMRI) of the brain. Several approaches have been proposed to estimate dispersion from single- and multi-shell dMRI acquisitions. Here, we derive solutions to bring these proposed methods to a standard orientation dispersion index (ODI) with the goal of making them comparable across different dMRI acquisitions. To illustrate the utility of the measures in studying brain aging, we further examined the age-dependent trajectory of the different single- and multi-shell ODI estimates in the white matter across the lifespan.Clinical Relevance- This work computes metrics of brain microstructure that can be adapted for large neuroimaging initiatives that aim to study the brain's development and aging, and to identify deviations that may serve as biomarkers of brain disease.


Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , Neuroimaging/methods
20.
medRxiv ; 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37090601

ABSTRACT

Diffusion MRI (dMRI) can be used to probe microstructural properties of brain tissue and holds great promise as a means to non-invasively map Alzheimer's disease (AD) pathology. Few studies have evaluated multi-shell dMRI models, such as neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator (MAP)-MRI, in cortical gray matter where many of the earliest histopathological changes occur in AD. Here, we investigated the relationship between CSF pTau181 and Aß1-42 burden and regional cortical NODDI and MAP-MRI indices in 46 cognitively unimpaired individuals, 18 with mild cognitive impairment, and two with dementia (mean age: 71.8±6.2 years) from the Alzheimer's Disease Neuroimaging Initiative. We compared findings to more conventional cortical thickness measures. Lower CSF Aß1-42 and higher pTau181 were associated with cortical dMRI measures reflecting less hindered or restricted diffusion and greater diffusivity. Cortical dMRI measures were more widely associated with Aß1-42 than pTau181 and better distinguished Aß+ from Aß- participants than pTau+/- participants. Conversely, cortical thickness was more tightly linked with pTau181. dMRI associations mediated the relationship between CSF markers and delayed logical memory performance, commonly impaired in early AD. dMRI measures sensitive to early AD pathogenesis and microstructural damage may elucidate mechanisms underlying cognitive decline.

SELECTION OF CITATIONS
SEARCH DETAIL