Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Ecotoxicol Environ Saf ; 281: 116609, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905937

ABSTRACT

Copper (Cu) is a necessary mineral nutrient for plant growth and development and is involved in several morphological, physiological, and biochemical processes; however, high concentrations of Cu can negatively impact these processes. The role of stomata in responding to various biotic and abiotic stimuli has not been studied in Bruguiera gymnorhiza, particularly in terms of their coordinated interactions at the molecular, physiological, and biochemical levels. Moreover, numerous plants employ strategies such as the presence of thick waxy cuticles on their leaf epidermis and the closing of stomata to reduce water loss. Thus, this study investigates the accumulation of Cu in B. gymnorhiza and its effect on leaf morphology and the molecular response under different Cu treatments (0, 200, and 400 mg L⁻¹, Cu0, Cu200, and Cu400, respectively) during a two years stress period. The results show that Cu stress affected accumulation and transport, increased the activities of peroxidase and ascorbate peroxidase, concentrations of soluble sugar, proline, and H2O2, and decreased the activity of catalase and content of malondialdehyde. Also, Cu-induced stress decreased the uptake of phosphorus and nitrogen and inhibited plant photosynthesis, which consequently led to reduced plant growth. Scanning electron microscopy combined with gas chromatography-mass spectrometry showed that B. gymnorhiza leaves had higher wax crystals and compositions under increased Cu stress, which forced the leaf's stomata to be closed. Also, the contents of alkanes, alcohols, primary alcohol levels (C26:0, C28:0, C30:0, and C32:0), n-Alkanes (C29 and C30), and other wax loads were significantly higher, while fatty acid (C12, C16, and C18) was lower in Cu200 and Cu400 compared to Cu0. Furthermore, the transcriptomic analyses revealed 1240 (771 up- and 469 downregulated), 1000 (723 up- and 277 down-regulated), and 1476 (808 up- and 668 downregulated) differentially expressed genes in Cu0 vs Cu200, Cu0 vs Cu400, and Cu200 vs Cu400, respectively. RNA-seq analyses showed that Cu mainly affected eight pathways, including photosynthesis, cutin, suberin, and wax biosynthesis. This study provides a reference for understanding mangrove response to heavy metal stress and developing novel management practices.


Subject(s)
Copper , Plant Leaves , Plant Stomata , Waxes , Copper/toxicity , Plant Leaves/drug effects , Plant Stomata/drug effects , Plant Stomata/physiology , Stress, Physiological/drug effects , Photosynthesis/drug effects , Onagraceae/drug effects , Onagraceae/physiology , Transcriptome/drug effects , Soil Pollutants/toxicity , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects
2.
J Environ Manage ; 354: 120312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340667

ABSTRACT

The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.


Subject(s)
Anti-Bacterial Agents , Soil Pollutants , Humans , Anti-Bacterial Agents/metabolism , Soil , Soil Pollutants/chemistry , Plants/metabolism , Environmental Pollution/analysis
3.
Environ Geochem Health ; 46(8): 275, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958819

ABSTRACT

Soil organic matter plays an important role in cadmium adsorption and immobilization. Since different organic matter components affect cadmium adsorption processes differently, selecting the right organic substrate and knowing how to apply it could improve cadmium remediation. This study compares the effects of two contrasting organic molecules; chitosan and citric acid, on cadmium adsorption and speciation in acidic Ultisol. The adsorption of chitosan to Ultisol significantly increased the soil positive charge while adsorption of citric acid increased the soil negative charge. At pH 5.0, the maximum amount of cadmium adsorbed in excess chitosan was 341% greater than that in excess citric acid. About 73-89% and 60-62% of adsorbed cadmium were bound to Fe/Mn oxides and organic matter/sulfide at pH 4.0 while this fraction was 77-100% and 57-58% for citric acid and chitosan at pH 5.0, respectively. This decrease in the complexing ability of chitosan was related to the destabilizing effect of high pH on chitosan's structure. Also, the sequence through which chitosan, citric acid, and cadmium were added into the adsorption system influenced the adsorption profile and this was different along a pH gradient. Specifically, adding chitosan and cadmium together increased adsorption compared to when chitosan was pre-adsorbed within pH 3.0-6.5. However, for citric acid, the addition sequence had no significant effect on cadmium adsorption between pH 3.0-4.0 compared to pH 6.5 and 7.5, with excess citric acid generally inhibiting adsorption. Given that the action of citric acid is short-lived in soil, chitosan could be a good soil amendment material for immobilizing cadmium.


Subject(s)
Cadmium , Chitosan , Citric Acid , Soil Pollutants , Soil , Chitosan/chemistry , Citric Acid/chemistry , Cadmium/chemistry , Adsorption , Soil Pollutants/chemistry , Soil/chemistry , Hydrogen-Ion Concentration , Environmental Restoration and Remediation/methods
4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958561

ABSTRACT

The copper transporter (COPT/Ctr) gene family plays a critical part in maintaining the balance of the metal, and many diverse species depend on COPT to move copper (Cu) across the cell membrane. In Arabidopsis thaliana, Oryza sativa, Medicago sativa, Zea mays, Populus trichocarpa, Vitis vinifera, and Solanum lycopersicum, a genome-wide study of the COPT protein family was performed. To understand the major roles of the COPT gene family in Kandelia obovata (Ko), a genome-wide study identified four COPT genes in the Kandelia obovata genome for the first time. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and Cu were all investigated in this research. Structural and sequence investigations show that most KoCOPTs have three transmembrane domains (TMDs). According to phylogenetic research, these KoCOPTs might be divided into two subgroups, just like Populus trichocarpa. KoCOPT gene segmental duplications and positive selection pressure were discovered by universal analysis. According to gene structure and motif analysis, most KoCOPT genes showed consistent exon-intron and motif organization within the same group. In addition, we found five hormones and four stress- and seven light-responsive cis-elements in the KoCOPTs promoters. The expression studies revealed that all four genes changed their expression levels in response to copper (CuCl2) treatments. In summary, our study offers a thorough overview of the Kandelia obovata COPT gene family's expression pattern and functional diversity, making it easier to characterize each KoCOPT gene's function in the future.


Subject(s)
Genes, Plant , Rhizophoraceae , Copper/metabolism , Copper Transport Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome-Wide Association Study , Multigene Family , Phylogeny , Plant Proteins/metabolism , Rhizophoraceae/genetics
5.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139139

ABSTRACT

Copper-containing amine oxidases (CuAOs) are known to have significant involvement in the process of polyamine catabolism, as well as serving crucial functions in plant development and response to abiotic stress. A genome-wide investigation of the CuAO protein family was previously carried out in sweet orange (Citrus sinensis) and sweet cherry (Prunus avium L.). Six CuAO (KoCuAO1-KoCuAO6) genes were discovered for the first time in the Kandelia obovata (Ko) genome through a genome-wide analysis conducted to better understand the key roles of the CuAO gene family in Kandelia obovata. This study encompassed an investigation into various aspects of gene analysis, including gene characterization and identification, subcellular localization, chromosomal distributions, phylogenetic tree analysis, gene structure analysis, motif analysis, duplication analysis, cis-regulatory element identification, domain and 3D structural variation analysis, as well as expression profiling in leaves under five different treatments of copper (CuCl2). Phylogenetic analysis suggests that these KoCuAOs, like sweet cherry, may be subdivided into three subgroups. Examining the chromosomal location revealed an unequal distribution of the KoCuAO genes across four out of the 18 chromosomes in Kandelia obovata. Six KoCuAO genes have coding regions with 106 and 159 amino acids and exons with 4 and 12 amino acids. Additionally, we discovered that the 2.5 kb upstream promoter region of the KoCuAOs predicted many cis elements linked to phytohormones and stress responses. According to the expression investigations, CuCl2 treatments caused up- and downregulation of all six genes. In conclusion, our work provides a comprehensive overview of the expression pattern and functional variety of the Kandelia obovata CuAO gene family, which will facilitate future functional characterization of each KoCuAO gene.


Subject(s)
Amine Oxidase (Copper-Containing) , Rhizophoraceae , Rhizophoraceae/genetics , Amine Oxidase (Copper-Containing)/metabolism , Phylogeny , Copper/metabolism , Amino Acids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
6.
J Sci Food Agric ; 103(7): 3531-3539, 2023 May.
Article in English | MEDLINE | ID: mdl-36788119

ABSTRACT

BACKGROUND: Manganese (Mn) is an essential micronutrient for plants, whereas excess Mn(II) in soils leads to its toxicity to crops. Mn(II) is adsorbed onto plant roots from soil solution and then absorbed by plants. Root charge characteristics should affect Mn(II) toxicity to crops and Mn(II) uptake by the roots of the crops. However, the differences in the effects of root surface charge on the uptake of Mn(II) among various crop species are not well understood. RESULTS: The roots of nine legumes and six non-legume poaceae were obtained by hydroponics and the streaming potential method and spectroscopic analysis were used to measure the zeta potentials and functional groups on the roots, respectively. The results indicate that the exchangeable Mn(II) adsorbed by plant roots was significantly positively correlated with the Mn(II) accumulated in plant shoots. Legume roots carried more negative charges and functional groups than non-legume poaceae roots, which was responsible for the larger amounts of exchangeable Mn(II) on legume roots in 2 h and the Mn(II) accumulated in their shoots in 48 h. Coexisting cations, such as Ca2+ and Mg2+ , were most effective in decreasing Mn(II) taken up by roots and accumulated in shoots than K+ and Na+ . This was because Ca2+ and Mg2+ could compete with Mn(II) for active sites on plant roots more strongly compared to K+ and Na+ . CONCLUSION: The root surface charge and functional groups are two important factors influencing Mn(II) uptake by roots and accumulation in plant shoots. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Poaceae , Manganese , Biological Transport , Crops, Agricultural , Vegetables , Soil , Plant Roots
7.
Ecotoxicol Environ Saf ; 234: 113409, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35286955

ABSTRACT

Incubation experiments were conducted to investigate the influencing factors of pH variation in different paddy soils during submerging/draining alternation and the relationship between pH buffering capacity (pHBC) and Cd speciation in ten paddy soils developed from different parent materials (including 8 acid paddy soils and 2 alkaline paddy soils). The soil pHBC and the changes in soil pH, Eh, Fe2+, Mn2+, SO42- and Cd speciation were determined. The results showed that there was a significant positive correlation between cation exchange capacity (CEC) and pHBC of these paddy soils, indicating that soil CEC is a key factor affecting the pHBC of paddy soils. The contribution of Fe(III) oxide reduction to H+ consumption is far greater than the reduction of Mn(IV)/Mn(III) oxides and SO42- during the submerging. For example, the contribution of the reduction of manganese oxides, SO42- and iron oxides to H+ consumption in the paddy soils from Anthrosol at 15 d submerging was 1.2%, 11.6% and 87.2%, respectively. This confirms that the reduction of Fe(III) oxides plays a leading role in increasing soil pH. Importantly, we noticed that during submerging, soil pH was increased and resulted in the content of available Cd in soils being reduced. This was due to the transformation of Cd to less active forms. Also, there was a significant positive correlation between the change rate of available Cd, the percentage of acid extractable Cd and pH variation. This suggests that the variation in soil pH was responsible for the transformation of Cd speciation. In addition, the change rate of available Cd and the percentage of acid extractable Cd concentration were significantly negatively correlated with soil pHBC. The soil with higher pHBC experienced less pH change, and thus the change rate of available Cd and the percentage of acid extractable Cd concentration were less for the soil. The results of this study can provide a basis for the remediation of Cd-contaminated acidic paddy soils.

8.
Ecotoxicol Environ Saf ; 207: 111224, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32890955

ABSTRACT

The roots of 4 japonica, 4 indica, and 7 hybrid rice varieties were obtained by hydroponic experiment and used to explore the relationship between charge characteristics and exchangeable manganese(II) (Mn(II)) on rice roots and Mn(II) absorption in roots and shoots of the rice. Results indicated Mn(II) adsorbed on rice roots mainly existed as exchangeable Mn(II) after 2 h. The roots of indica and hybrid rice carried more negative charges than the roots of japonica rice. Accordingly, this led to more exchangeable Mn(II) to be adsorbed on roots of indica and hybrid rice after 2 h and more Mn(II) absorbed in the roots of the same varieties after 48 h. However, this was contrary to the result of Mn(II) absorption in rice shoots after 48 h. Coexisting cations of K+, Na+, Ca2+, and Mg2+ reduced the exchangeable Mn(II) on rice roots through their competition with Mn(II) for sorption sites on rice roots, which led to the decrease in Mn(II) absorption in rice roots and shoots. Ca2+ and Mg2+ showed a greater decrease in the Mn(II) absorbed in roots and shoots than K+ and Na+. The reduction of Mn(II) absorption in the roots of indica rice and hybrid rice induced by Ca2+ and Mg2+ was more than that of japonica rice. This was attributed to more negative charges on the roots of the former than the latter. Therefore, the absorption of Mn(II) by rice roots was determined by surface charge properties and exchangeable Mn(II) on the rice roots. The results suggested that Ca2+ and Mg2+ have potential to alleviate Mn(II) toxicity to rice.


Subject(s)
Manganese/toxicity , Oryza/metabolism , Soil Pollutants/toxicity , Adsorption , Manganese/metabolism , Oryza/drug effects , Plant Roots/drug effects , Soil Pollutants/metabolism
9.
J Environ Manage ; 297: 113306, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34280864

ABSTRACT

Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.


Subject(s)
Pinus , Soil Pollutants , Biomass , Ecosystem , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
10.
Ecotoxicol Environ Saf ; 196: 110545, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32276162

ABSTRACT

The relationship between the chemical forms of Cu2+ and Cd2+ adsorbed on the roots of different wheat cultivars and their phytotoxic effects on the plants were investigated. The wheat varieties Dunmaiwang (DMW), Tekang 6 (TK6), Zhongmai895 (ZM895), and Chaojixiaomai (AK68) were used. The zeta potentials of wheat roots, measured by the streaming potential method, were used to characterize root charge properties. Results indicated that the changes in zeta potential at pH 4.01-6.61 were 14.7, 15.53, 13.01, and 12.06 mV for ZM895, AK68, DMW, and TK6, respectively. The negative charge and functional groups on ZM895 and AK68 roots were greater than on DMW and TK6 roots, which led to more exchangeable and complexed Cu2+ and Cd2+ on ZM895 and AK68 roots and increased Cu2+ and Cd2+ toxicity compared to DMW and TK6. Coexisting cations, such as Ca2+, Mg2+, K+, and NH4+, alleviated Cu2+ and Cd2+ toxicity to wheat roots through competition for adsorption sites on the roots, which decreased exchangeable and complexed Cu2+ and Cd2+ on wheat roots. The Ca2+ and Mg2+ were most effective in alleviating heavy metal toxicity and they decreased exchangeable Cu2+ on AK68 roots by 39.14% and 47.82%, and exchangeable Cd2+ by 8.51% and 28.23%, respectively.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Soil Pollutants/toxicity , Triticum/drug effects , Adsorption , Cadmium/chemistry , Cadmium/pharmacokinetics , Cations , Copper/chemistry , Copper/pharmacokinetics , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/physiology , Soil Pollutants/chemistry , Soil Pollutants/pharmacokinetics , Triticum/metabolism , Triticum/physiology
11.
Ecotoxicol Environ Saf ; 171: 790-797, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30660972

ABSTRACT

The continuous production of low molecular weight (LMW) organic acids by plants and microorganisms coupled with the continuous presence of extracellular polymeric substances (EPS) in soils is a guarantee that the mobility of heavy metals in soils will be controlled. The effects of citrate, oxalate, and EPS on the adsorption of Pb by an acidic Ultisol were studied both as a function of pH and ionic strength. Electrokinetic potential measurements were also employed to observe to what extent each ligand affected the surface charge property of the Ultisol. All the ligands shifted the zeta potential of the Ultisol to the negative direction, implying that the surface charge of the soil became more negative. The effect on the zeta potential of the soil was observed in the order of oxalate ˃ citrate ˃ EPS. The quantity of Pb adsorbed at each pH (3.0-7.0) reflected the corresponding change in the zeta potential as induced by each ligand. The presence of the ligands shifted the isoelectric point of the Ultisol from 4.8 to 3.2 for the EPS system and below 3.0 for the citrate and oxalate systems. More Pb was adsorbed in the presence of oxalate than in the presence of citrate and EPS. The two most outstanding mechanisms that governed the adsorption of Pb by the Ultisol were (1) electrostatic attraction which was supported by the increase in negative zeta potential of the Ultisol and, (2) complexation which was supported by the lesser proportion of Pb adsorbed in the citrate system at higher pH and also by the spectroscopic data for EPS. The combination EPS + citrate + oxalate was more effective in enhancing the adsorption of Pb than the combination EPS + oxalate and EPS + citrate.


Subject(s)
Citric Acid/chemistry , Extracellular Polymeric Substance Matrix , Lead/chemistry , Oxalates/chemistry , Pseudomonas fluorescens , Soil Pollutants/chemistry , Soil/chemistry , Adsorption , Hydrogen-Ion Concentration , Osmolar Concentration , Surface Properties
12.
Ecotoxicol Environ Saf ; 165: 11-18, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30173021

ABSTRACT

Soil arsenic (As) contamination is a serious concern because of its mark negative impacts on plant growth and physiological processes. In plant-soil system, As competes against phosphorus (P) which depends on charge component of different soil types. The main objective of this study was to investigate the influence of ((NH4)3PO4 (PO43-) and Ca5(PO4)3(OH) (phosphorite)) in ameliorating As stress on plant physiological process against As toxicity and their role in As accumulation. We performed eighteen treatments with different levels of As (0, 35, and 70 mg/kg) and P (0, 100, and 200 mg/kg) against two P sources of PO43- and phosphorite. Overall, more improvement in plant growth was observed by addition of PO43- than phosphorite. Significant increases in plant height (51%), dry biomass (root (49%) and shoot (40%)), chlorophyll contents (88%), total soluble sugars (58%) and plant functional leaves (51%) were observed by PO43- application as compared to their corresponding un-fertilized treatment under As stress conditions. However, proline and MDA contents were decreased by 49% and 71% with PO43- applied, respectively, under As stress. The As and P uptake by soybean were remarkably enhanced by the application of PO43- than phosphorite. Therefore, highly soluble P supplementation has great potential to minimize As-induced damage to plant growth in acidic soils and improve As uptake by plants. The findings obtained in present study will be used as an important tool for amelioration of As polluted acidic soils.


Subject(s)
Arsenic/toxicity , Glycine max/drug effects , Phosphorus/metabolism , Soil Pollutants/toxicity , Arsenic/metabolism , Biological Transport , Biomass , Chlorophyll/analysis , Lipid Peroxidation , Minerals/analysis , Minerals/metabolism , Phosphates/analysis , Phosphates/metabolism , Phosphorus/analysis , Proline/analysis , Soil Pollutants/metabolism , Glycine max/chemistry , Glycine max/growth & development , Glycine max/metabolism , Stress, Physiological , Sugars/metabolism
13.
Chemosphere ; 349: 140896, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070606

ABSTRACT

Chitosan is a biodegradable polymer with a vast range of applications. Along with its metal composites, chitosan has been applied in the remediation of polluted soils as well as a biofertilizer. However, little attention has been given to the degradation of chitosan composites in soil and how they affect soil respiration rate and other physicochemical parameters. In this study, the degradation of chitosan and its composites with gibbsite and hematite in an acidic Ultisol and the effect on urea (200 mg N kg-1) transformation were investigated in a 70-d incubation experiment. The results showed that the change trends of soil pH, N forms, and CO2 emissions were similar for chitosan and its composites when applied at rates <5 g C kg-1. At a rate of 5 g C kg-1, the C and N mineralization trends suggested that the chitosan-gibbsite composite was more stable in soil and this stability was owed to the formation of a new chemical bond (CH-N-Al-Gibb) as observed in the Fourier-transform infrared spectrum at 1644 cm-1. The mineralization of the added materials significantly increased soil pH and decreased soil exchangeable acidity (P < 0.01). This played an important role in decreasing the amount of H+ produced during urea transformation in the soil. The soil's initial pH was an important factor influencing C and N mineralization trends. For instance, increasing the initial soil pH significantly increased the nitrification rate and chitosan decomposition trend (P < 0.01) and thus, the contribution of chitosan and its composites to increase soil pH and inhibit soil acidification during urea transformation was significantly decreased (P < 0.01). These findings suggest that to achieve long-term effects of chitosan in soils, applying it as a chitosan-gibbsite complex is a better option.


Subject(s)
Chitosan , Soil , Soil/chemistry , Carbon/chemistry , Nitrogen/analysis , Urea , Hydrogen-Ion Concentration
14.
Sci Total Environ ; 926: 171577, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521268

ABSTRACT

Pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a significant concern. This concern has become more problematic given the rapid modification of PAHs in the environment during co-contamination to form substituted PAHs. This review aims to integrate bibliometric analysis with a rigorous study of mechanistic insights, resulting in a more comprehensive knowledge of evolving research trends on PAH remediation. The results show that research in this field has progressed over the years and peaked in 2022, potentially due to the redirection of resources toward emerging pollutants, hinting at the dynamic nature of environmental research priorities. During this year, 158,147 documents were published, representing 7 % of the total publications in the field between 2000 and 2023. The different remediation methods used for PAH remediation were identified and compared. Bioremediation, having >90 % removal efficiency, has been revealed to be the best technique because it is cost-effective and easy to operate at large scale in situ and ex-situ. The current challenges in PAH remediation have been detailed and discussed. Implementing innovative and sustainable technologies that target pollutant removal and valuable compound recovery is necessary to build a more robust future for water management.

15.
J Hazard Mater ; 466: 133601, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38309159

ABSTRACT

Mangroves are of important economic and environmental value and research suggests that their carbon sequestration and climate change mitigation potential is significantly larger than other forests. However, increasing salinity and heavy metal pollution significantly affect mangrove ecosystem function and productivity. This study investigates the tolerance mechanisms of rhizobacteria in the rhizosphere of Avicennia marina under salinity and copper (Cu) stress during a 4-y stress period. The results exhibited significant differences in antioxidant levels, transcripts, and secondary metabolites. Under salt stress, the differentially expressed metabolites consisted of 30% organic acids, 26.78% nucleotides, 16.67% organic heterocyclic compounds, and 10% organic oxides as opposed to 27.27% organic acids, 24.24% nucleotides, 15.15% organic heterocyclic compounds, and 12.12% phenyl propane and polyketides under Cu stress. This resulted in differential regulation of metabolic pathways, with phenylpropanoid biosynthesis being unique to Cu stress and alanine/aspartate/glutamate metabolism and α-linolenic acid metabolism being unique to salt stress. The regulation of metabolic pathways enhanced antioxidant defenses, nutrient recycling, accumulation of osmoprotectants, stability of plasma membrane, and chelation of Cu, thereby improving the stress tolerance of rhizobacteria and A. marina. Even though the abundance and community structure of rhizobacteria were significantly changed, all the samples were dominated by Proteobacteria, Chloroflexi, Actinobacteriota, and Firmicutes. Since the response mechanisms were unbalanced between treatments, this led to differential growth trends for A. marina. Our study provides valuable inside on variations in diversity and composition of bacterial community structure from mangrove rhizosphere subjected to long-term salt and Cu stress. It also clarifies rhizobacterial adaptive mechanisms to these stresses and how they are important for mitigating abiotic stress and promoting plant growth. Therefore, this study can serve as a reference for future research aimed at developing long-term management practices for mangrove forests.


Subject(s)
Avicennia , Heterocyclic Compounds , Copper/toxicity , Copper/metabolism , Ecosystem , Avicennia/metabolism , Soil , Antioxidants/metabolism , Multiomics , Salt Stress , Nucleotides/metabolism , Heterocyclic Compounds/metabolism
16.
Chemosphere ; 313: 137570, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563731

ABSTRACT

Phyllosilicate minerals are the important components in soils and an important source of activated aluminum (Al) during soil acidification. However, the mechanisms for Al activation in phyllosilicate minerals were not understood well. In this paper, the effect of phyllosilicate surface hydroxyl groups on Al activation during acidification was studied after the minerals were modified with inorganic and organic materials. After modification of kaolinite, montmorillonite, and illite with fulvic acid (FA-), iron oxide (Fe-), Fe combined with FA (Fe-FA-), and siloxane (Si-O-), the interlayer spaces were altered. For instance, when modified with Fe, Fe entered the interlayer spaces of kaolinite and montmorillonite and changed the interlayer spaces of both minerals but did not affect that of illite. Also, the other modification methods had significant effects on the interlayer space of montmorillonite but not on kaolinite and illite. It was observed that all the modification strategies inhibited Al activation during acidification by reducing the number of hydroxyl groups on the mineral surfaces and inhibiting protonation reactions between H+ and hydroxyl groups. Nevertheless, the inhibition effect varies with the type of phyllosilicate mineral. For kaolinite (Kao), the inhibition effect of the different modification methods on Al activation during acidification followed: Fe-FA-Kao > Fe-Kao > Si-O-Kao > FA-Kao. Additionally, for montmorillonite (Mon), the inhibition effect was in the order: Si-O-Mon > Fe-Mon > Fe-FA-Mon > FA-Mon, while for illite, it was: Fe-illite > Si-O-illite ≈ Fe-FA-illite > FA-illite. Thus, the hydroxyl groups on the surfaces and edges of phyllosilicate minerals play an important role in the activation of Al from the mineral structure. Also, the protonation of hydroxyl groups may be the first step during Al activation in these minerals. The results of this study can serve as a reference for the development of new technologies to inhibit soil acidification and Al activation.


Subject(s)
Aluminum , Kaolin , Kaolin/chemistry , Clay , Bentonite/chemistry , Aluminum Silicates/chemistry , Adsorption , Minerals/chemistry , Soil , Hydrogen-Ion Concentration
17.
Environ Pollut ; 318: 120865, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36521718

ABSTRACT

Coexisting of microplastics (MPs) and residual herbicides has received substantial attention due to concerns about the pollutant vector effect. Here, the widely used amide herbicides were examined for their sorption behaviors on the priority biodegradable and nondegradable MPs identified in intensive agriculture. The fitting results indicated that the interactions between napropamide (Nap)/acetochlor (Ace) and the MPs, i.e., poly (butyleneadipate-co-terephthalate) microplastic (PBATM), polyethylene microplastic (PEM), and polypropylene microplastic (PPM), may be dominated by hydrophobic absorptive partitioning on the heterogeneous surfaces. Additionally, chemisorption cannot be ignored for the sorption of Nap/Ace on the biodegradable MPs. The sorption capacities of Nap/Ace on the MPs followed the order of PBATM > PEM > PPM. The differences in sorption capacity which varied by the MP colors were not significant. The hydrophobicity of the herbicides and the MPs, the rubber regions, surface O-functional groups, benzene ring structures and large specific surface area of the biodegradable MPs played key roles in the better performance in sorbing amide herbicides. Moreover, MPs, especially biodegradable MPs, might lead to a higher vector effect for residual amide herbicides than some other common environmental media. This study may provide baseline insights into the great potential of biodegradable MPs to serve as carriers of residual amide herbicides in intensive agrosystems.


Subject(s)
Plastics , Water Pollutants, Chemical , Plastics/chemistry , Microplastics/chemistry , Amides , Adsorption , Polypropylenes , Polyethylene , Agriculture , Water Pollutants, Chemical/analysis
18.
Front Plant Sci ; 14: 1318383, 2023.
Article in English | MEDLINE | ID: mdl-38239217

ABSTRACT

Natural resistance-associated macrophage proteins (NRAMPs) are a class of metal transporters found in plants that exhibit diverse functions across different species. Transporter proteins facilitate the absorption, distribution, and sequestration of metallic elements within various plant tissues. Despite the extensive identification of NRAMP family genes in various species, a full analysis of these genes in tree species is still necessary. Genome-wide identification and bioinformatics analysis were performed to understand the roles of NRAMP genes in copper (CuCl2) stress in Kandelia obovata (Ko). In Arachis hypogaea L., Populus trichocarpa, Vitis vinifera, Phaseolus vulgaris L., Camellia sinensis, Spirodela polyrhiza, Glycine max L. and Solanum lycopersicum, a genome-wide study of the NRAMP gene family was performed earlier. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and CuCl2 were all investigated in this research. In order to comprehend the notable functions of the NRAMP gene family in Kandelia obovata, a comprehensive investigation was conducted at the genomic level. This study successfully found five NRAMP genes, encompassing one gene pair resulting from whole-genome duplication and a gene that had undergone segmental duplication. The examination of chromosomal position revealed an unequal distribution of the KoNRAMP genes across chromosomes 1, 2, 5, 7, and 18. The KoNRAMPs can be classified into three subgroups (I, II, and SLC) based on phylogeny and synteny analyses, similar to Solanum lycopersicum. Examining cis-regulatory elements in the promoters revealed five hormone-correlated responsive elements and four stress-related responsive elements. The genomic architecture and properties of 10 highly conserved motifs are similar among members of the NRAMP gene family. The conducted investigations demonstrated that the expression levels of all five genes exhibited alterations in response to different levels of CuCl2 stress. The results of this study offer crucial insights into the roles of KoNRAMPs in the response of Kandelia obovata to CuCl2 stress.

19.
Sci Total Environ ; 874: 162464, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36858227

ABSTRACT

Biochar can inhibit soil acidification by decreasing the H+ input from nitrification and improving soil pH buffering capacity (pHBC). However, biochar is a complex material and the roles of its different components in inhibiting soil acidification induced by nitrification remain unclear. To address this knowledge gap, dissolved biochar fractions (DBC) and solid biochar particles (SBC) were separated and mixed thoroughly with an amended Ultisol. Following a urea addition, the soils were subjected to an incubation study. The results showed that both the DBC and SBC inhibited soil acidification by nitrification. The DBC inhibited soil acidification by decreasing the H+ input from nitrification, while SBC enhanced the soil pHBC. The DBC from peanut straw biochar (PBC) and rice straw biochar (RBC) decreased the H+ release by 16 % and 18 % at the end of incubation. The decrease in H+ release was attributed to the inhibition of soil nitrification and net mineralization caused by the toxicity of the phenols in DBC to soil bacteria. The abundance of ammonia-oxidizing bacteria (AOB) and total bacteria decreased by >60 % in the treatments with DBC. The opposite effects were observed in the treatments with SBC. Soil pHBC increased by 7 % and 19 % after the application of solid RBC and PBC particles, respectively. The abundance of carboxyl on the surface of SBC was mainly responsible for the increase in soil pHBC. Generally, the mixed application of DBC and SBC was more effective at inhibiting soil acidification than their individual applications. The negative impacts of dissolved biochar components on soil microorganisms need to be closely monitored.


Subject(s)
Nitrification , Soil , Soil/chemistry , Bacteria , Charcoal/chemistry , Arachis , Hydrogen-Ion Concentration , Soil Microbiology
20.
Sci Total Environ ; 881: 163469, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37061067

ABSTRACT

Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.


Subject(s)
Environmental Restoration and Remediation , Water Pollutants, Chemical , Animals , Humans , Anti-Bacterial Agents/analysis , Water Pollutants, Chemical/analysis , Wastewater , Environmental Pollution/analysis , Adsorption , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL