Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Cell Sci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092789

ABSTRACT

The structure of the sperm flagellar axoneme is highly conserved across species and serves the essential function of generating motility to facilitate the meeting of spermatozoa with the egg. During spermiogenesis, the axoneme elongates from the centrosome, and subsequently the centrosome docks onto the nuclear envelope to continue tail biogenesis. Mycbpap is expressed predominantly in mouse and human testes and conserved in Chlamydomonas as FAP147. A previous cryo-electron microscopy analysis has revealed the localization of FAP147 to the central apparatus of the axoneme. Here, we generated Mycbpap knockout mice and demonstrated the essential role of Mycbpap in male fertility. Deletion of Mycbpap led to disrupted centrosome-nuclear envelope docking and abnormal flagellar biogenesis. Furthermore, we generated transgenic mice with tagged MYCBPAP, which restored the fertility of Mycbpap knockout males. Interactome analyses of MYCBPAP using Mycbpap transgenic mice unveiled binding partners of MYCBPAP including central apparatus proteins such as CFAP65 and CFAP70 that constitute the C2a projection and centrosome-associated proteins such as CCP110. These findings provide insights into a MYCBPAP-dependent regulation of the centrosome-nuclear envelope docking and sperm tail biogenesis.

2.
Biol Reprod ; 110(4): 750-760, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38217862

ABSTRACT

Sperm proteins undergo post-translational modifications during sperm transit through the epididymis to acquire fertilizing ability. We previously reported that the genomic region coding Pate family genes is key to the proteolytic processing of the sperm membrane protein ADAM3 and male fertility. This region contains nine Pate family genes (Pate5-13), and two protein-coding genes (Gm27235 and Gm5916), with a domain structure similar to Pate family genes. Therefore, in this study, we aimed to identify key factors by narrowing the genomic region. We generated three knockout (KO) mouse lines using CRISPR/Cas9: single KO mice of Pate10 expressed in the caput epididymis; deletion KO mice of six caput epididymis-enriched genes (Pate5-7, 13, Gm27235, and Gm5916) (Pate7-Gm5916 KO); and deletion KO mice of four genes expressed in the placenta and epididymis (Pate8, 9, 11, and 12) (Pate8-12 KO). We observed that the fertility of only Pate7-Gm5916 KO males was reduced, whereas the rest remained unaffected. Furthermore, when the caput epididymis-enriched genes, Pate8 and Pate10 remained in Pate7-Gm5916 KO mice were independently deleted, both KO males displayed more severe subfertility due to a decrease in mature ADAM3 and a defect in sperm migration to the oviduct. Thus, our data showed that multiple caput epididymis-enriched genes within the region coding Pate5-13 cooperatively function to ensure male fertility in mice.


Subject(s)
ADAM Proteins , Spermatozoa , Animals , Female , Male , Mice , Pregnancy , Epididymis/metabolism , Fertility/genetics , Genomics , Mice, Knockout , Semen , Spermatozoa/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL