Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 257
Filter
Add more filters

Publication year range
1.
Cell ; 165(5): 1171-1181, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27156450

ABSTRACT

Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.


Subject(s)
Ribonuclease P/chemistry , Ribonucleoproteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomycetales/enzymology , Telomerase/chemistry , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Immunoprecipitation , Mass Spectrometry , Models, Molecular , RNA, Fungal/metabolism , Ribonuclease P/metabolism , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Telomerase/metabolism
2.
Nat Methods ; 21(7): 1316-1328, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38918605

ABSTRACT

Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce 'Lightning Pose', an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We released a cloud application that allows users to label data, train networks and process new videos directly from the browser.


Subject(s)
Algorithms , Bayes Theorem , Video Recording , Animals , Video Recording/methods , Supervised Machine Learning , Cloud Computing , Software , Posture/physiology , Deep Learning , Image Processing, Computer-Assisted/methods , Behavior, Animal
3.
Cell ; 150(3): 453-4, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863000

ABSTRACT

In order for telomeres to remain functional and stable, they must rendezvous with the enzyme telomerase in a productive manner. In human cells, this interaction is mediated by Cajal bodies as matchmaker, and now Zhong et al. reveal molecular determinants that establish good chemistry between the two partners.

4.
Genes Chromosomes Cancer ; 63(3): e23229, 2024 03.
Article in English | MEDLINE | ID: mdl-38481055

ABSTRACT

A close relationship has been demonstrated between genomic complexity and clinical outcome in uterine smooth muscle tumors. We studied the genomic profiles by array-CGH of 28 fumarate hydratase deficient leiomyomas and 37 leiomyomas with bizarre nuclei (LMBN) from 64 patients. Follow-up was available for 46 patients (from three to 249 months, mean 87.3 months). All patients were alive without evidence of disease. For 51 array-CGH interpretable tumors the mean Genomic Index (GI) was 16.4 (median: 9.8; from 1 to 57.8), significantly lower than the mean GI in LMS (mean GI 51.8, p < 0.001). We described three groups: (1) a group with FH deletion (24/58) with low GI (mean GI: 11 vs. 22,4, p = 0.02), (2) a group with TP53 deletion (17/58) with higher GI (22.4 vs. 11 p = 0.02), and (3) a group without genomic events on FH or TP53 genes (17/58) (mean GI:18.3; from 1 to 57.8). Because none of these tumors recurred and none showed morphological features of LMS we concluded that GI at the cut-off of 10 was not applicable in these subtypes of LM. By integration of all those findings, a GI <10 in LMBN remains a valuable argument for benignity. Conversely, in LMBN a GI >10 or alteration in tumor suppressor genes, should not alone warrant a diagnosis of malignancy. Nine tumors were tested with Nanocind CINSARC® signature and all were classified in low risk of recurrence. We propose, based on our observations, a diagnostic approach of these challenging lesions.


Subject(s)
Leiomyoma , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Fumarate Hydratase/genetics , Leiomyoma/genetics , Leiomyoma/pathology , Genes, p53 , Genomics
5.
Anal Chem ; 96(3): 1129-1137, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38197168

ABSTRACT

The stark difference between global and local metal oxidation dynamics underscores the need for methodologies capable of performing precise sub-µm-scale and wide-field measurements. In this study, we present reflective microscopy as a tool developed to address this challenge, illustrated by the example of chronoamperometric Fe oxidation in a NaCl solution. Analysis at a local scale of 10 s of µm has revealed three distinct periods of Fe oxidation: the initial covering of the metal interface with a surface film, followed by the electrochemical conversion of the formed surface film, and finally, the in-depth oxidation of Fe. In addition, thermodynamic calculations and the quantitative analysis of changes in optical signal (light intensity), correlated with variations in refractive indexes, suggest the initial formation of maghemite, followed by its subsequent conversion to magnetite. The reactivity maps for all three periods are heterogeneous, which can be attributed to the preferential oxidation of certain crystallographic grains. Notably, at the global scale of 100 s of µm, reactivity initiates at the electrode border and progresses toward its center, demonstrating a unique pattern that is independent of the local metal structure. This finding underscores the significance of simultaneously employing sub-µm-precise, quantitative, and wide-field measurements for a comprehensive description of metal oxidation processes.

6.
Anal Chem ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340052

ABSTRACT

Tip-enhanced Raman spectroscopy (TERS) is an emerging nanospectroscopy technique whose implementation in situ/operando, namely, in the liquid phase and under electrochemical polarization (EC-TERS), remains challenging. The investigation of electrochemical processes at the nanoscale, in real time and over wide potential windows can be of particular interest but tedious when using EC-STM-TERS. This approach was successfully applied to the investigation of a well-established but yet complex system (a thiolated nitrobenzene derivative 4-NBM) whose reduction mechanism involves various multistep reaction paths, most likely pH-dependent. In light of the EC-TERS analysis carried out under specific conditions limiting the full (6 e-/6 H+) electrochemical reduction of 4-NBM and its photocoupling, a bimolecular electrochemical reaction path, difficult to evidence from the electrochemical response only, is proposed.

7.
Small ; : e2309607, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757541

ABSTRACT

Understanding the oxidation/reduction dynamics of secondary microparticles formed from agglomerated nanoscale primary particles is crucial for advancing electrochemical energy storage technologies. In this study, the behavior of individual copper hexacyanoferrate (CuHCF) microparticles is explored at both global and local scales combining scanning electrochemical microscopy (SECM), for electrochemical interrogation of a single, but global-scale microparticle, and optical microscopy monitoring to obtain a higher resolution dynamic image of the local electrochemistry within the same particle. Chronoamperometric experiments unveil a multistep oxidation/reduction process with varying dynamics. On the one hand, the global SECM analysis enables quantifying the charge transfer as well as its dynamics at the single microparticle level during the oxidation/reduction cycles by a redox mediator in solution. These conditions allow mimicking the charge storage processes in these particles when they are used as solid boosters in redox flow batteries. On the other hand, optical imaging with sub-particle resolution allows the mapping of local conversion rates and state-of-charge within individual CuHCF particles. These maps reveal that regions of different material loadings exhibit varying charge storage capacities and conversion rates. The findings highlight the significance of porous nanostructures and provide valuable insights for designing more efficient energy storage materials.

8.
PLoS Biol ; 19(5): e3001215, 2021 05.
Article in English | MEDLINE | ID: mdl-33979326

ABSTRACT

Perceptual anomalies in individuals with autism spectrum disorder (ASD) have been attributed to an imbalance in weighting incoming sensory evidence with prior knowledge when interpreting sensory information. Here, we show that sensory encoding and how it adapts to changing stimulus statistics during feedback also characteristically differs between neurotypical and ASD groups. In a visual orientation estimation task, we extracted the accuracy of sensory encoding from psychophysical data by using an information theoretic measure. Initially, sensory representations in both groups reflected the statistics of visual orientations in natural scenes, but encoding capacity was overall lower in the ASD group. Exposure to an artificial (i.e., uniform) distribution of visual orientations coupled with performance feedback altered the sensory representations of the neurotypical group toward the novel experimental statistics, while also increasing their total encoding capacity. In contrast, neither total encoding capacity nor its allocation significantly changed in the ASD group. Across both groups, the degree of adaptation was correlated with participants' initial encoding capacity. These findings highlight substantial deficits in sensory encoding-independent from and potentially in addition to deficits in decoding-in individuals with ASD.


Subject(s)
Autism Spectrum Disorder/physiopathology , Visual Perception/physiology , Adolescent , Autism Spectrum Disorder/metabolism , Humans , Male , Models, Theoretical
9.
J Vasc Interv Radiol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754760

ABSTRACT

Reinforced cementoplasty with spindles is a recently introduced technique that is mainly used for pathological fractures or for bone metastases at risk of fracture in locations with shear stresses. The technique is less challenging to perform than percutaneous screw insertion and does not require equipment sterilization. No general anesthetic is required. A small trocar is all that is needed, and sutures are often unnecessary. Reinforced cementoplasty can therefore be considered as a technical evolution of cementoplasty with the simple addition of material within the trocar. This technique deserves more awareness so that it can be included in interventional radiologists' range of procedures.

10.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33798099

ABSTRACT

The ability to identify our own body and its boundaries is crucial for survival. Ideally, the sooner we learn to discriminate external stimuli occurring close to our body from those occurring far from it, the better (and safer) we may interact with the sensory environment. However, when this mechanism emerges within ontogeny is unknown. Is it something acquired throughout infancy, or is it already present soon after birth? The presence of a spatial modulation of multisensory integration (MSI) is considered a hallmark of a functioning representation of the body position in space. Here, we investigated whether MSI is present and spatially organized in 18- to 92-h-old newborns. We compared electrophysiological responses to tactile stimulation when concurrent auditory events were delivered close to, as opposed to far from, the body in healthy newborns and in a control group of adult participants. In accordance with previous studies, adult controls showed a clear spatial modulation of MSI, with greater superadditive responses for multisensory stimuli close to the body. In newborns, we demonstrated the presence of a genuine electrophysiological pattern of MSI, with older newborns showing a larger MSI effect. Importantly, as for adults, multisensory superadditive responses were modulated by the proximity to the body. This finding may represent the electrophysiological mechanism responsible for a primitive coding of bodily self boundaries, thus suggesting that even just a few hours after birth, human newborns identify their own body as a distinct entity from the environment.


Subject(s)
Brain/physiology , Electrophysiological Phenomena , Physical Stimulation , Space Perception/physiology , Electroencephalography , Humans , Infant, Newborn , Learning , Reaction Time
11.
J Neurosci ; 42(27): 5451-5462, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35641186

ABSTRACT

Sensory evidence accumulation is considered a hallmark of decision-making in noisy environments. Integration of sensory inputs has been traditionally studied using passive stimuli, segregating perception from action. Lessons learned from this approach, however, may not generalize to ethological behaviors like navigation, where there is an active interplay between perception and action. We designed a sensory-based sequential decision task in virtual reality in which humans and monkeys navigated to a memorized location by integrating optic flow generated by their own joystick movements. A major challenge in such closed-loop tasks is that subjects' actions will determine future sensory input, causing ambiguity about whether they rely on sensory input rather than expectations based solely on a learned model of the dynamics. To test whether subjects integrated optic flow over time, we used three independent experimental manipulations, unpredictable optic flow perturbations, which pushed subjects off their trajectory; gain manipulation of the joystick controller, which changed the consequences of actions; and manipulation of the optic flow density, which changed the information borne by sensory evidence. Our results suggest that both macaques (male) and humans (female/male) relied heavily on optic flow, thereby demonstrating a critical role for sensory evidence accumulation during naturalistic action-perception closed-loop tasks.SIGNIFICANCE STATEMENT The temporal integration of evidence is a fundamental component of mammalian intelligence. Yet, it has traditionally been studied using experimental paradigms that fail to capture the closed-loop interaction between actions and sensations inherent in real-world continuous behaviors. These conventional paradigms use binary decision tasks and passive stimuli with statistics that remain stationary over time. Instead, we developed a naturalistic visuomotor visual navigation paradigm that mimics the causal structure of real-world sensorimotor interactions and probed the extent to which participants integrate sensory evidence by adding task manipulations that reveal complementary aspects of the computation.


Subject(s)
Optic Flow , Animals , Female , Humans , Male , Mammals , Movement
12.
J Neurosci ; 42(45): 8450-8459, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351831

ABSTRACT

Since the discovery of conspicuously spatially tuned neurons in the hippocampal formation over 50 years ago, characterizing which, where, and how neurons encode navigationally relevant variables has been a major thrust of navigational neuroscience. While much of this effort has centered on the hippocampal formation and functionally-adjacent structures, recent work suggests that spatial codes, in some form or another, can be found throughout the brain, even in areas traditionally associated with sensation, movement, and executive function. In this review, we highlight these unexpected results, draw insights from comparison of these codes across contexts, regions, and species, and finally suggest an avenue for future work to make sense of these diverse and dynamic navigational codes.


Subject(s)
Spatial Navigation , Spatial Navigation/physiology , Brain/physiology , Brain Mapping , Hippocampus/physiology , Neurons/physiology
13.
PLoS Comput Biol ; 18(9): e1010464, 2022 09.
Article in English | MEDLINE | ID: mdl-36103520

ABSTRACT

Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them-thus delineating our peripersonal space (PPS)-may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli-but critically is still present for receding stimuli when observation uncertainty is non-zero-, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.


Subject(s)
Personal Space , Touch Perception , Bayes Theorem , Neurons , Space Perception/physiology , Touch/physiology , Touch Perception/physiology
14.
Faraday Discuss ; 246(0): 441-465, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37427498

ABSTRACT

We explore the possibility of coupling the transport of ions and water in a nanochannel with the chemical transformation of a reactant at an individual catalytic nanoparticle (NP). Such configuration could be interesting for constructing artificial photosynthesis devices coupling the asymmetric production of ions at the catalytic NP, with the ion selectivity of the nanochannels acting as ion pumps. Herein we propose to observe how such ion pumping can be coupled to an electrochemical reaction operated at the level of an individual electrocatalytic Pt NP. This is achieved by confining a (reservoir) droplet of electrolyte to within a few micrometres away from an electrocatalytic Pt NP on an electrode. While the region of the electrode confined by the reservoir and the NP are cathodically polarised, operando optical microscopy reveals the growth of an electrolyte nanodroplet on top of the NP. This suggests that the electrocatalysis of the oxygen reduction reaction operates at the NP and that an electrolyte nanochannel is formed - acting as an ion pump - between the reservoir and the NP. We have described here the optically imaged phenomena and their relevance to the characterization of the electrolyte nanochannel linking the NPs to the electrolyte microreservoir. Additionally, we have addressed the capacity of the nanochannel to transport ions and solvent flow to the NP.

15.
J Pathol ; 257(3): 367-378, 2022 07.
Article in English | MEDLINE | ID: mdl-35302657

ABSTRACT

Most high-grade ovarian carcinomas (HGOCs) are sensitive to carboplatin (CBP)-based chemotherapy but frequently recur within 24 months. Recurrent tumors remain CBP-sensitive and acquire resistance only after several treatment rounds. Recurrences arise from a small number of residual tumor cells not amenable to investigation in patients. We developed patient-derived xenografts (PDXs) that allow the study of these different stages of CBP-sensitive recurrence and acquisition of resistance. We generated PDX models from CBP-sensitive and intrinsically resistant HGOC. PDXs were CBP- or mock-treated and tumors were sampled, after treatment and at recurrence. We also isolated models with acquired-resistance from CBP-sensitive PDXs. Tumors were characterized at the histological and transcriptome levels. PDX models reproduced treatment response seen in the patients. CBP-sensitive residual tumors contained nonproliferating tumor cell clusters embedded in a fibrotic mesh. In nontreated PDX tumors and treated CBP-resistant tumors, fibrotic tissue was not prevalent. Residual tumors had marked differences in gene expression when compared to naïve and recurrent tumors, indicating downregulation of the cell cycle and proliferation and upregulation of interferon response and the epithelial-mesenchymal transition. This gene expression pattern resembled that described in embryonal diapause and 'drug-tolerant persister' states. Residual and acquired-resistance tumors share the overexpression of three genes: CEACAM6, CRYAB, and SOX2. Immunostaining analysis showed strong CEACAM6, CRYAB, and SOX2 protein expression in CBP-sensitive residual and acquired-resistance PDX, thus confirming the RNA profiling results. In HGOC PDX, CBP-sensitive recurrences arise from a small population of quiescent, drug-tolerant, residual cells embedded in a fibrotic mesh. These cells overexpress CEACAM6, CRYAB, and SOX2, whose overexpression is also associated with acquired resistance and poor patient prognosis. CEACAM6, CRYAB, and SOX2 may thus serve as a biomarker to predict recurrence and emergence of resistant disease in CBP-treated HGOC patients. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Antigens, CD , Carcinoma, Ovarian Epithelial , Cell Adhesion Molecules , GPI-Linked Proteins , Ovarian Neoplasms , SOXB1 Transcription Factors , alpha-Crystallin B Chain , Antigens, CD/biosynthesis , Antigens, CD/genetics , Carboplatin/pharmacology , Carboplatin/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Drug Resistance, Neoplasm , Female , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/genetics , Humans , Neoplasm Recurrence, Local , Neoplasm, Residual , Recurrence , SOXB1 Transcription Factors/biosynthesis , SOXB1 Transcription Factors/genetics , Xenograft Model Antitumor Assays , alpha-Crystallin B Chain/biosynthesis , alpha-Crystallin B Chain/genetics
16.
Annu Rev Psychol ; 73: 103-129, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34546803

ABSTRACT

Navigating by path integration requires continuously estimating one's self-motion. This estimate may be derived from visual velocity and/or vestibular acceleration signals. Importantly, these senses in isolation are ill-equipped to provide accurate estimates, and thus visuo-vestibular integration is an imperative. After a summary of the visual and vestibular pathways involved, the crux of this review focuses on the human and theoretical approaches that have outlined a normative account of cue combination in behavior and neurons, as well as on the systems neuroscience efforts that are searching for its neural implementation. We then highlight a contemporary frontier in our state of knowledge: understanding how velocity cues with time-varying reliabilities are integrated into an evolving position estimate over prolonged time periods. Further, we discuss how the brain builds internal models inferring when cues ought to be integrated versus segregated-a process of causal inference. Lastly, we suggest that the study of spatial navigation has not yet addressed its initial condition: self-location.


Subject(s)
Motion Perception , Neurosciences , Brain/physiology , Cognition , Cues , Humans , Motion Perception/physiology
17.
Proc Natl Acad Sci U S A ; 117(20): 11158-11166, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32358192

ABSTRACT

Autism Spectrum Disorder (ASD) is a common neurodevelopmental disturbance afflicting a variety of functions. The recent computational focus suggesting aberrant Bayesian inference in ASD has yielded promising but conflicting results in attempting to explain a wide variety of phenotypes by canonical computations. Here, we used a naturalistic visual path integration task that combines continuous action with active sensing and allows tracking of subjects' dynamic belief states. Both groups showed a previously documented bias pattern by overshooting the radial distance and angular eccentricity of targets. For both control and ASD groups, these errors were driven by misestimated velocity signals due to a nonuniform speed prior rather than imperfect integration. We tracked participants' beliefs and found no difference in the speed prior, but there was heightened variability in the ASD group. Both end point variance and trajectory irregularities correlated with ASD symptom severity. With feedback, variance was reduced, and ASD performance approached that of controls. These findings highlight the need for both more naturalistic tasks and a broader computational perspective to understand the ASD phenotype and pathology.


Subject(s)
Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/physiopathology , Adolescent , Bayes Theorem , Child , Humans , Models, Neurological , Motion Perception/physiology , Photic Stimulation
18.
Angew Chem Int Ed Engl ; 62(29): e202304950, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37216394

ABSTRACT

This work proposes a novel method for measuring the intrinsic activity of single metal-based nanoparticles towards water reduction in neutral media at industrially relevant current densities. Instead of using gas nanobubbles as proxy, the method uses optical microscopy to track the local footprint of the reaction through the precipitation of metal hydroxide, which is associated to the local pH increase during electrocatalysis. The results show the electrocatalytic activities of different types of metal nanoparticles and bifunctionnal core-shell nanostructures made of Ni and Pt, and demonstrate the importance of metal hydroxide nano-shells in enhancing electrocatalysis. This method should be generalizable to any electrocatalytic reaction involving pH changes such as nitrate or CO2 reduction.

19.
PLoS Comput Biol ; 17(9): e1009439, 2021 09.
Article in English | MEDLINE | ID: mdl-34550974

ABSTRACT

Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.


Subject(s)
Algorithms , Artificial Intelligence/statistics & numerical data , Behavior, Animal , Video Recording , Animals , Computational Biology , Computer Simulation , Markov Chains , Mice , Models, Statistical , Neural Networks, Computer , Supervised Machine Learning/statistics & numerical data , Unsupervised Machine Learning/statistics & numerical data , Video Recording/statistics & numerical data
20.
Int J Gynecol Pathol ; 41(6): 578-582, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35051988

ABSTRACT

Angiolipoleiomyoma is a very rare lesion of the uterus. To the best of our knowledge, only 20 cases have been described in the literature. It is an insufficiently defined entity, which is not included in the WHO classification. This lesion may be therefore underdiagnosed and underestimated. We describe here a case of a 58-yr-old woman who underwent routine gynecological examination. Ultrasonography revealed a heterogeneous myometrial mass, while magnetic resonance imaging showed a voluminous corporeal and fundic myometrial mass protruding into the uterine cavity. A total hysterectomy was performed. The macroscopic examination revealed an intramural solitary round mass with a heterogeneous cut-surface. Microscopically, the lesion consisted of an admixture of smooth muscle, adipose tissue, and blood vessels. Desmin was positive, while HMB45 was negative in the tumor. Molecular tests were performed and revealed, for the first time to our knowledge, a case of an angiolipoleiomyoma harboring KRAS and KIT mutations.


Subject(s)
Angiomyolipoma , Uterine Neoplasms , Female , Humans , Angiomyolipoma/diagnosis , Hysterectomy , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Uterine Neoplasms/diagnostic imaging , Uterine Neoplasms/genetics , Uterine Neoplasms/surgery , Uterus/pathology , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL